ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The microwave emission properties of first-year sea ice were investigated from the R/V Polarstern during the Antarctic Winter Weddell Gyre Project in 1989. Radiometer measurements were made at 611 MHz and 10 GHz and were accompanied by video and visual observations. Using the theory of radiometric emission from a layered medium, a method for deriving sea ice thickness from radiometer data is developed and tested. The model is based on an incoherent reflection process and predicts that the emissivity of saline ice increases monotonically with increasing ice thickness until saturation occurs.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; C12; p. 22,569-22,577
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The accurate quantification of new ice and open water areas and surface temperatures within the sea ice packs is a key to the realistic parameterization of heat, moisture, and turbulence fluxes between ocean and atmosphere in the polar regions. Multispectral NOAA advanced very high resolution radiometer/2 (AVHRR/2) satellite images are analyzed to evaluate how effectively the data can be used to characterize sea ice in the Bering and Greenland seas, both in terms of surface type and physical temperature. The basis of the classification algorithm, which is developed using a late wintertime Bering Sea ice cover data, is that frequency distributions of 10.8- micrometers radiances provide four distinct peaks, represeting open water, new ice, young ice, and thick ice with a snow cover. The results are found to be spatially and temporally consistent. Possible sources of ambiguity, especially associated with wider temporal and spatial application of the technique, are discussed. An ice surface temperature algorithm is developed for the same study area by regressing thermal infrared data from 10.8- and 12.0- micrometers channels against station air temperatures, which are assumed to approximate the skin temperatures of adjacent snow and ice. The standard deviations of the results when compared with in situ data are about 0.5 K over leads and polynyas to about 0.5-1.5 K over thick ice. This study is based upon a set of in situ data limited in scope and coverage. Cloud masks are applied using a thresholding technique that utilizes 3.74- and 10.8- micrometers channel data. The temperature maps produced show coherence with surface features like new ice and leads, and consistency with corresponding surface type maps. Further studies are needed to better understand the effects of both the spatial and temporal variability in emissivity, aerosol and precipitable atmospheric ice particle distribution, and atmospheric temperature inversions.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research; 99; C3; p. 5201-5218
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation (with correlation coefficient at 0.998) and a standard deviation of 1.1 C. Overall, the rms error is estimated to be from 1 to 2 C, depending on the surface, while the average bias when compared with in situ data is less than 2 C.
    Keywords: OCEANOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C3; p. 5181-5200
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: More than two decades of satellite passive microwave data are used to study and evaluate the large scale characteristics and the changing state of the sea ice cover in both the Northern and Southern Hemispheres. Satellite data provide day/night almost continuous observation of global sea ice cover thereby enabling quantitative variability studies at various time scales. Despite coarse sensor resolution, spatial detail is provided through the use of sea ice concentrations which are derived using an algorithm that determines the fraction of ice and open water within each satellite footprint. Large seasonal fluctuations in the extent are apparent with those of the Southern Hemisphere having larger amplitudes but less symmetrical seasonal distribution than those of the Northern Hemisphere. The large scale interannual variability of the ice cover has been evaluated globally as well as regionally and in the Northern Hemisphere, the yearly anomaly maps show a predominance of positive values in the 1980s and negative values in the 1990s. Regression analysis show that the ice extent and ice area are on a decline at the rate of -2.0 +/- 0.5% and -3.1 +/- 0.3% per decade, respectively, in the Northern Hemisphere but there are regions like the Bering Sea with positive trends. What is intriguing, however, is that the perennial sea ice cover has been declining at a much faster rate than for the entire hemisphere, i.e., 6.7 +/- 2.4% and 8.3 +/- 2.4 % per decade for ice extent and ice area, respectively. The perennial ice cover consists mainly of thick multiyear ice floes, and its persistent decline would mean a reduction in the average thickness of sea ice and a change in the overall characteristics of the Arctic sea ice cover. Furthermore, the yearly anomaly patterns are coherent with those of surface temperatures derived from 19 years of thermal infrared AVHRR data. The latter also shows that in consolidated ice regions, the average temperature during summer minima has been increasing at about 0.9 +/- 0.6 K per decade.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: Co-registered and continuous satellite data of sea ice concentrations and surface ice temperatures from 1981 to 1999 are analyzed to evaluate relationships between these two critical climate parameters and what they reveal in tandem about the changing Arctic environment. During the 18-year period, the actual Arctic ice area is shown to be declining at a rate of 3.1 +/- 0.4 % /decade while the surface ice temperature has been increasing at 0.4 +/- 0.2 K /decade. Yearly anomaly maps also show that the ice concentration anomalies are predominantly positive in the 1980s and negative in the 1990s while surface temperature anomalies were mainly negative in the 1980s and positive in the 1990s. The yearly ice concentration and surface temperature anomalies are shown to be highly correlated indicating a strong link especially in the seasonal region and around the periphery of the perennial ice cover. The surface temperature data are also especially useful in providing the real spatial scope of each warming (or cooling) phenomenon that usually extends beyond the boundaries of the sea ice cover. Studies of the temporal variability of the summer ice minimum also reveal that the perennial ice cover has been declining at the rate of 6.6% /decade while the summer surface ice temperature has been increasing at the rate of 1.3 K /decade. Moreover, high year-to-year fluctuations in the minimum ice cover in the 1990s may have caused reductions in average thickness of the Arctic sea ice cover.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-29
    Description: Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya activities. Also, heat and salinity fluxes are proportionately increased in these areas compared to those from the thicker ice areas. A slight positive trend in ice extent and area from 1978 through 2000 is observed consistent with slight continental cooling during the period. However, the confidence in this result is only moderate because the overlap period for key instruments is just one month and the sensitivity to changes in sensor characteristics, calibration and threshold for the ice edge is quite high.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: The Odden Ice tongue of the Greenland Sea normally forms locally In winter as frazfl-pancake ice, allowing high positive salt fluxes during freezing that leads to open ocean convection. We report observations from satellites, aircraft, ships and submarines which show that in two recent years (1987 and 1996) a late-season Odden developed composed of old ice advected by the East Greenland Current. The Impact of such Odden is different in that it is in a state of melt and serves to stabilize the surface water in the region. The history of Oddens since 1978 is reviewed to examine the frequency of both modes.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-29
    Description: The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration 〉 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the counterintuitive prediction of a global atmospheric-ocean model of increasing sea ice around Antarctica with climate warming due to the stabilizing effects of increased snowfall on the Southern Ocean.
    Keywords: Oceanography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-23
    Description: The most comprehensive large-scale characterization of the global sea ice cover so far has been provided by satellite passive microwave data. Accurate retrieval of ice concentrations from these data is important because of the sensitivity of surface flux(e.g. heat, salt, and water) calculations to small change in the amount of open water (leads and polynyas) within the polar ice packs. Two algorithms that have been used for deriving ice concentrations from multichannel data are compared. One is the NASA Team algorithm and the other is the Bootstrap algorithm, both of which were developed at NASA's Goddard Space Flight Center. The two algorithms use different channel combinations, reference brightness temperatures, weather filters, and techniques. Analyses are made to evaluate the sensitivity of algorithm results to variations of emissivity and temperature with space and time. To assess the difference in the performance of the two algorithms, analyses were performed with data from both hemispheres and for all seasons. The results show only small differences in the central Arctic in but larger disagreements in the seasonal regions and in summer. In some ares in the Antarctic, the Bootstrap technique show ice concentrations higher than those of the Team algorithm by as much as 25%; whereas, in other areas, it shows ice concentrations lower by as much as 30%. The The differences in the results are caused by temperature effects, emissivity effects, and tie point differences. The Team and the Bootstrap results were compared with available Landsat, advanced very high resolution radiometer (AVHRR) and synthetic aperture radar (SAR) data. AVHRR, Landsat, and SAR data sets all yield higher concentrations than the passive microwave algorithms. Inconsistencies among results suggest the need for further validation studies.
    Keywords: Earth Resources and Remote Sensing
    Type: Laboratory for Hydrospheric Processes Research Publications (ISSN 0034-4257); 129-130
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...