ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Redox-sensitive mobilization of nutrients from sediments strongly affects the eutrophic state of the central Baltic Sea; a region associated with the spread of hypoxia and almost permanently anoxic and sulfidic conditions in the deeper basins. Ventilation of these basins depends on renewal by inflow of water enriched in oxygen (O2) from the North Sea, occurring roughly once per decade. Benthic fluxes and water column distributions of dissolved inorganic nitrogen species, phosphate (PO43-), dissolved inorganic carbon (DIC), sulfide (HS-), and total oxygen uptake (TOU) were measured along a depth gradient in the Eastern Gotland Basin (EGB). Campaigns were conducted during euxinic conditions of the deep basin in Aug./Sept. 2013 and after two inflow events in July/Aug. 2015 and March 2016 when O2 concentrations in deep waters reached 60 μM. The intrusion of O2-rich North Sea water into the EGB led to an approximate 33 and 10% reduction of the seabed PO43- and ammonium (NH4+) release from deep basin sediments. Post-inflow, the deep basin sediment was rapidly colonized by HS- oxidizing bacteria tentatively assigned to the family Beggiatoaceae, and HS- release was completely suppressed. The presence of a hypoxic transition zone (HTZ) between 80 and 120 m water depth was confirmed not only for euxinic deep-water conditions during 2013 but also for post-inflow conditions. Because deep-water renewal did not ventilate the HTZ, where PO43- and NH4+ fluxes were highest, high seabed nutrient release there was relatively unchanged. Extrapolation of the in situ nutrient fluxes indicated that, overall, the reduction in PO43- and NH4+ release in response to deep-water renewal can be considered as minor, reducing the internal nutrient load by 2 and 12% only, respectively. Infrequent inflow events thus have a limited capacity to sustainably reduce internal nutrient loading in the EGB and mitigate eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Dissolved oxygen (O2) and nutrient concentrations at the continental margin of the eastern tropical south Pacific (ETSP) exhibit elevated intra-seasonal, seasonal and inter-annual variability. Here, we discuss the impact of remotely forced and locally generated intra-seasonal variability of the eastern boundary circulation at 12°S. Data from a multi-cruise physical and biogeochemical measurement program conducted during the declining phase of the 2017 Coastal El Niño event between April and June (austral autumn) are used. Upper ocean temperatures were anomalously high and during the latter cruises the oxycline was displaced downward compared with previous observations in austral summer 2008/09 and 2012/13. We observed the offshore propagation of a freshly generated eddy and an associated phase of weak poleward flow. After the reestablishing of the poleward Peru-Chile Undercurrent (PCUC) the passage of a remotely-generated downwelling coastal trapped wave (CTW) causes an intensification of poleward velocities exceeding 50 cm s-1. Warm temperature anomalies persisted during the intensified PCUC while sea surface temperature anomalies declined after the peak of the Coastal El Niño event. During the period of PCUC acceleration, nitrate concentrations increased while the nitrogen deficit became reduced. This suggests the advection of water less affected by anoxic biogeochemistry whereas during the period of weak poleward flow the water was biogeochemically altered more. The upper boundary of anoxic water was displaced downward increasing the depth range where bottom waters were ventilated while nitrite was depleted concurrently. We will analyze the different response of temperature, nutrients, and O2 to the varying circulation and discuss the implications for the biogeochemical element cycling in the water column and the sediments.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Dissolved oxygen (O2) and nutrient concentrations at the continental margin of the eastern tropical south Pacific exhibit elevated intra-seasonal, seasonal and inter-annual variability. Here, we discuss the impact of intra-seasonal variability of the eastern boundary circulation at 12°S on the hydrography and biogeochemistry. Data from a multi-cruise physical and biogeochemical measurement program conducted between April and June (austral autumn) 2017 are used and compared to earlier cruises. Upper ocean temperatures were anomalously high and from mid-April onwards the oxycline was displaced downward compared with previous observations in austral summer 2008/09 and 2012/13. We observed the offshore propagation of a newly generated eddy and an associated phase of weak poleward flow. After the reestablishing of the poleward Peru-Chile Undercurrent (PCUC) the passage of a downwelling coastal trapped wave caused an intensification of poleward velocities exceeding 50 cm/s. Warm temperature anomalies persisted during the intensified PCUC while sea surface temperature anomalies declined after the peak of the 2017 Coastal El Niño event in March. During the period of PCUC acceleration, nitrate concentrations increased while the phosphate concentrations were less affected, resulting in a drastically reduced nitrogen deficit. Because the temperature and salinity properties of the water remained unchanged the pathways of water supply are probably the same. Therefore the reduced nitrogen deficit was likely caused by shorter advection timescales in the intensified flow leaving the water less affected by anaerobic biogeochemistry. We discuss the occurrence of such events and their implications for the biogeochemical element cycling in the water column and the sediments.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-20
    Description: Bottom contact trawling from commercial fishing activity can have profound impacts on the sea floor, as trawling gear can both resuspend the surface sediments and shift sediment to the sides of the gear, forming furrows and mounds. This disturbance can thus have profound impacts on the benthic biogeochemistry, as these surface sediments generally contain the most labile organic matter, and the porewaters can be elevated in dissolved redox-sensitive metals (Fe and Mn). Disturbance can thus mix these Fe- and Mn- rich porewaters with oxygenated bottom waters, which can reoxidize and form particles, potentially making their distribution more heterogeneous and acting as a substrate for sorption processes. As these particulate iron oxy(hydr)oxides and manganese oxides can be reduced by the sulfide produced by microbial sulfate reduction, the distribution of these phases has profound implications for the habitability of surface sediments by modifying sulfide concentrations and related toxicity for higher life. Here, we report on a research endeavor in Fehmarn Belt, an extensively fished region in the Southern Baltic Sea, Germany. Inside of this area, we collected sediment cores from a variety of sites ranging from undisturbed (due to a nearby shipwreck and boulders) to heavily trawled. From these cores we analyzed a suite of porewater parameters (including: dissolved sulfide, Fe, Mn, SO4, nutrients, and 13C-DIC), solid phase parameters (including: Hg, TIC, CNS, reactive Fe, and reactive Mn), as well as rates of sulfate reduction (SRR). Due to the addition of an ultra-short baseline acoustic positioning system (USBL) on our multicorer (MUC), we are able to relate these parameters not just to coarse estimates of areal trawling density, but also obtain a fine (about 1 m) estimate of the MUC location in relation to specific trawl marks. Thus, we are well equipped to broaden our understanding of the impact of bottom contact trawling on benthic biogeochemical element cycling.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Highlights • next to organic matter degradation, bioirrigation and bottom water percolation through permeable surface sediments enhances benthic TPO43- and Fe2+ release • changes in bottom water oxygenation induce slight changes benthic TPO43- and Fe2+ release rates measured in 2011 and 2014 • deoxygenation experiments imply enhanced TPO43- and Fe2+ release at ongoing deoxygenation in the Mauritanian OMZ Abstract Benthic fluxes of total dissolved phosphate (TPO43-), dissolved iron (Fe2+), and dissolved inorganic carbon (DIC) were determined in situ using benthic chambers at nine stations along a depth transect between 47 and 1108 m water depth at 18 °N off Mauritania (NW Africa) during the upwelling season in 2014 (RV Meteor cruise M107). Bottom water oxygen (O2) concentrations were always ≥ 25 µM, and all fluxes (TPO43-, Fe2+, DIC) were consistently directed from the sediments into the bottom water. The highest benthic TPO43- release of 0.2 ± 0.07 mmol m2 d-1 was found at 47 m water depth (50 µM O2). The highest diffusive Fe2+ flux of 0.03 mmol m2 d-1, determined from porewater Fe2+ concentrations, occurred at 67 m water depth (27 µM O2). This was much lower than the detrital Fe supply as indicated by constant Fe/Al ratios along the depth transect. TPO43- release rates decreased concurrently with DIC flux and water depth. A difference of up to one order of magnitude between benthic chamber and diffusive TPO43- fluxes indicated that the total TPO43- release was strongly enhanced by bioirrigation. The observed fluxes were similar to those measured during an earlier cruise in 2011, generally indicating comparable release rates during both upwelling seasons. Furthermore, ex situ oxygen manipulation experiments showed an increase of the nutrient release (e.g. TPO43-, Fe2+) after seven days of anoxic bottom water conditions. The fluxes were enhanced by a factor of 1.4 for P and 7.3 for Fe compared to the measured release under natural conditions and reached values as high as those measured in the anoxic oxygen minimum zone off Peru. Our observations support the hypothesis that increasing deoxygenation of the oceans will likely enhance sedimentary TPO43- and Fe2+ release and thus contribute to a positive feedback mechanism with increasing nutrient levels and increased ocean productivity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors—nitrate (NO3−) or oxygen (O2)—makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). Denitrification and O2 respiration rates significantly scale sublinearly with the cell volume. The scaling is lower for O2 respiration than for denitrification, indicating that NO3− metabolism during denitrification is more efficient than O2 metabolism during aerobic respiration in foraminifera from the Peruvian OMZ. The negative correlation of the O2 respiration rate with the surface/volume ratio is steeper than for the denitrification rate. This is likely explained by the presence of an intracellular NO3− storage in denitrifying foraminifera. Furthermore, we observe an increasing mean cell volume of the Peruvian foraminifera, under higher NO3− availability. This suggests that the cell size of denitrifying foraminifera is not limited by O2 but rather by NO3− availability. Based on our findings, we develop a mathematical formulation of foraminiferal cell volume as a predictor of respiration and denitrification rates, which can further constrain foraminiferal biogeochemical cycling in biogeochemical models. Our findings show that NO3− is the preferred electron acceptor in foraminifera from the OMZ, where the foraminiferal contribution to denitrification is governed by the ratio between NO3− and O2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The intraseasonal evolution of physical and biogeochemical properties during a coastal trapped wave event off central Peru is analysed using data from an extensive shipboard observational programme conducted between April and June 2017, and remote sensing data. The poleward velocities in the Peru–Chile Undercurrent were highly variable and strongly intensified to above 0.5 m s−1 between the middle and end of May. This intensification was likely caused by a first-baroclinic-mode downwelling coastal trapped wave, excited by a westerly wind anomaly at the Equator and originating at about 95∘ W. Local winds along the South American coast did not impact the wave. Although there is general agreement between the observed cross-shore-depth velocity structure of the coastal trapped wave and the velocity structure of first vertical mode solution of a linear wave model, there are differences in the details of the two flow distributions. The enhanced poleward flow increased water mass advection from the equatorial current system to the study site. The resulting shorter alongshore transit times between the Equator and the coast off central Peru led to a strong increase in nitrate concentrations, less anoxic water, likely less fixed nitrogen loss to N2 and a decrease of the nitrogen deficit compared to the situation before the poleward flow intensification. This study highlights the role of changes in the alongshore advection due to coastal trapped waves for the nutrient budget and the cumulative strength of N cycling in the Peruvian oxygen minimum zone. Enhanced availability of nitrate may impact a range of pelagic and benthic elemental cycles, as it represents a major electron acceptor for organic carbon degradation during denitrification and is involved in sulfide oxidation in sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...