ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 1
    Publication Date: 2004-12-03
    Description: Common Berthing Mechanism (CBM) provides the structural interface between separate International Space Station (ISS) elements, such as the Laboratory and Node modules. The CBM consists of an active and a passive half that join together with structural bolts. The seal at this interface is the CBM-to-CBM molded seal. The CBM-to-CBM interface is assembled on orbit, thus the seals can be exposed to the space environment for up to 65 hours. Atomic Oxygen/Vacuum Ultraviolet radiation (AO/VUV) in space is a potential hazard to the seals. Testing was conducted to determine the effect on leakage of the CBM-to-CBM seal material exposed to AO/VUV. The sealing materials were S383 silicone and V835 fluorocarbon material. Control samples, which were not exposed to the AO/VUV environment, were used to ensure that if any changes in leakage occurred, they could be attributed to the AO/VUV exposure. After exposure to the AO/VUV environment the leakage increase was dramatic for the fluorocarbon. This testing was a major contributing factor in selecting silicone as the CBM-to-CBM seal material.
    Keywords: Mechanical Engineering
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 149-160; NASA/CR-1998-208598-Preprint
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-07
    Description: Common Berthing Mechanism (CBM provides the structural interface between separate International Space Station (ISS) elements, such as the Laboratory and Node modules. The CBM consists of an active and a passive half that join together with structural bolts. The seal at this interface is the CBM-to-CBM molded seal. The CBM-to-CBM interface is assembled on orbit, thus the seals can be exposed to the space environment for up to 65 hours. Atomic Oxygen/Vacuum Ultraviolet radiation (AO/VUV) in space is a potential hazard to the seals. Testing was conducted to determine the effect on leakage of the CBM-to-CBM seal material exposed to AO/VUV. The sealing materials were S383 silicone and V835 fluorocarbon material. Control samples, which were not exposed to the AO/VUV environment, were used to ensure that ff any changes in leakage occurred, they could be attributed to the AO/VUV exposure. After exposure to the AO/VUV environment the leakage increase was dramatic for the fluorocarbon. This testing was a major contributing factor in selecting silicone as the CBM-to-CBM seal material.
    Keywords: Mechanical Engineering
    Type: 20th Space Simulation Conference: The Changing Testing Paradigm; 195-206; NASA/CP-1999-208598
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: Measurement Techniques in Space Plasmas: Fields; Geophysical-Monograph-103
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: The Electron Drift Instrument (EDI) is a new technique for measuring electric fields in space by detecting the effect on weak beams of test electrons. This U.S. portions of the technique, flight hardware, and flight software were developed for the Cluster mission under this contract. Dr. Goetz Paschmann of the Max Planck Institute in Garching, Germany, was the Principle Investigator for Cluster EDI. Hardware for Cluster was developed in the U.S. at the University of New Hampshire, Lockheed Palo Alto Research Laboratory, and University of California, San Diego. The Cluster satellites carrying the original EDI instruments were lost in the catastrophic launch failure of first flight of the Arianne-V rocket in 1996. Following that loss, NASA and ESA approved a rebuild of the Cluster mission, for which all four satellites were successfully launched in the Summer of 2000. Limited operations of EDI were also obtained on the Equator-S satellite, which was launched in December, 1997. A satellite failure caused a loss of the Equator-S mission after only 5 months, but these operations were extremely valuable in learning about the characteristics and operations of the complex EDI instrument. The Cluster mission, satellites, and instruments underwent an extensive on-orbit commissioning phase in the Fall of 2000, carrying over through January 2001. During this period all elements of the instruments were checked and careful measurements of inter-experiments interferences were made. EDI is currently working exceptionally well in orbit. Initial results verify that all aspects of the instrument are working as planned, and returning highly valuable scientific information. The first two papers describing EDI on-orbit results have been submitted for publication in April, 2001. The principles of the EDI technique, and its implementation on Cluster are described in two papers by Paschmann et al., attached as Appendices A and B. The EDI presentation at the formal Cluster Commissioning Review, held at ESA Headquarters in Paris, is attached as Appendix C.
    Keywords: Spacecraft Instrumentation and Astrionics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The Aerospace Corporation developed the Electron PreProcessor (EPP) to support the Imaging Electron Spectrometer (IES) that is part of the RAPID experiment on the ESA/NASA CLUSTER mission. The purpose of the EPP is to collect raw data from the IES and perform processing and data compression on it before transferring it to the RAPID microprocessor system for formatting and transmission to the CLUSTER satellite data system. The report provides a short history of the RAPID and CLUSTER programs and describes the EPP design. Four EPP units were fabricated, tested, and delivered for the original CLUSTER program. These were destroyed during a launch failure. Four more EPP units were delivered for the CLUSTER II program. These were successfully launched and are operating nominally on orbit.
    Keywords: Instrumentation and Photography
    Type: AEROSPACE-ATR-2001(7252)-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...