ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: A database can greatly benefit a quantitative analysis. The defining characteristic of a quantitative risk, or reliability, model is the use of failure estimate data. Models can easily contain a thousand Basic Events, relying on hundreds of individual data sources. Obviously, entering so much data by hand will eventually lead to errors. Not so obviously entering data this way does not aid linking the Basic Events to the data sources. The best way to organize large amounts of data on a computer is with a database. But a model does not require a large, enterprise-level database with dedicated developers and administrators. A database built in Excel can be quite sufficient. A simple spreadsheet database can link every Basic Event to the individual data source selected for them. This database can also contain the manipulations appropriate for how the data is used in the model. These manipulations include stressing factors based on use and maintenance cycles, dormancy, unique failure modes, the modeling of multiple items as a single "Super component" Basic Event, and Bayesian Updating based on flight and testing experience. A simple, unique metadata field in both the model and database provides a link from any Basic Event in the model to its data source and all relevant calculations. The credibility for the entire model often rests on the credibility and traceability of the data.
    Keywords: Computer Programming and Software
    Type: JSC-CN-30914 , Annual Technical Symposium; May 09, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The atmosphere is constantly in motion. The changing gravitational force due to the air mass movement will slightly perturb the orbit of a satellite. As the instrument accuracy for geodetic satellites improves, failure to model this perturbation can result in significant systematic errors in the orbit determination. The latter, in turn, will degrade the Earth's gravity solutions. A direct modeling technique to analyze the atmospheric gravitational influence on geodetic satellite is developed. We use the global surface pressure data from the ECMWF Initial Analysis Database to compute the gravitational force due to atmospheric perturbation exerted on given satellite as a function of time during selected orbital arcs. Satellite Laser Ranging (SLR) tracking data for selected Starlette (altitude 900 km) orbital arcs are used to test the computed force model. Although only a slight reduction in the rms residuals is observed when the atmospheric gravitational perturbation is included in the force model for data reduction of the SLR data, significant improvement is obtained in the predictability of the satellite orbit. Comprehensive studies involving more definitive test criteria and more refined models are still needed.
    Keywords: ASTRODYNAMICS
    Type: In: From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results (A93-55951 24-46); p. 73-81.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Physiologist, Supplement (ISSN 0031-9376); 32; S-1 to S
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-20
    Description: Magnetic field of a model radiation belt numerically computed
    Keywords: FLUID MECHANICS
    Type: Journal of Geophysical Research; Volume 66; No. 12; 4013-4026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: The Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), Volume 1; p 61-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron rich tailings in the Coeur d'Alene (CDA) River Valley using remotely sensed data is complicated by the full vegetation cover present in the area. Because exposures of rock and soil were sparse, the data processing techniques used in this study were sensitive to detecting materials at subpixel scales. The methods used included spectral mixture analysis and a constrained energy minimization technique.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: JPL, Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop; p 47-50
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: This work explores the feasibliity of using high performance laser clocks to detect effects of rotation in the near field region of the Earth's gravitational field. According to general relativity, the time recorded by an independent clock is the proper time of the space-time metric that applies to the system under consideration. If the gravitational source is stationary (nonrotating), proper time involves only the speed of the clocks and the scalar gravitational potential at the position of the clocks. However, if the source is rotating, the motion of the source could have an effect on the metric. Previous attempts to calculate the relativistic timekeeping for terrestrial clocks have used the metric for a nonrotating system, primarily because metrics for a rotating system were not available. This work investigates the specific effects of rotation on the Earth's gravitational field and the corresponding effect on timekeeping of laser clocks in the near field environment.
    Keywords: PHYSICS (GENERAL)
    Type: Hampton Inst., NASA/American Society for Engineering Educ; Hampton Inst., NASA(
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The SUNLITE program of NASA's LaRC aims to demonstrate lower noise and better frequency stability for continuous-wave (CW) solid-state lasers in the microgravity environment of space. The program will utilize laser-diode-pumped nonplanar-ring oscillators regulated by ultra-stable high-finesse Fabry-Perot Spectrometers to produce light beams with phase rate or frequency variations as low as 3 Hz. SUNLITE will use the period-method (P-method) to measure the phase rate and frequency stability of the lasers. The P-method was chosen because it requires less memory space for the raw data, because frequencies can be analyzed on-line in real-time simply by reciprocating the periods (fi = 1/pi), and because the mean and variance of the frequencies can be calculated as fast or faster than they can be with the fastest fast Fourier transformations. Furthermore, for a given signal-to-noise power ratio, the P-method requires less data and less computer time to extract the noise components. Although the P-method does require fast Time Interval Counters, the Fourier transformation method requires comparably fast Sampling Volt meters. For either method, however, time and computer speed play a critical role.
    Keywords: LASERS AND MASERS
    Type: Old Dominion Univ., NASA/American Society for Engineering Ed; Old Dominion Univ.,
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: The first results are presented of a multiwavelength study of Infrared Astronomy Satellite (IRAS) galaxies with excess radio emission. The sample was selected by cross correlating the IRAS Faint Source Survey, and the Point Source Catalogue with the Texas radio survey. Recent optical (imaging and spectroscopic) and radio (VLA) observations are discussed. These observations will be used to investigate possible connections between radio galaxy activity, star formation and galaxy interactions.
    Keywords: ASTROPHYSICS
    Type: NASA, Marshall Space Flight Center, Paired and Interacting Galaxies: International Astronomical Union Colloquium No. 124; p 309-314
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: One of the advantages afforded by imaging spectrometers such as AVIRIS is the capability to detect target materials at a sub-pixel scale. This paper presents several examples of the identification of poorly exposed geologic materials - materials which are either subpixel in scale or which, while having some surface expression over several pixels, are partially covered by vegetation or other materials. Sabol et al. (1992) noted that a primary factor in the ability to distinguish sub-pixel targets is the spectral contrast between the target and its surroundings. In most cases, this contrast is best expressed as an absorption feature or features present in the target but absent in the surroundings. Under such circumstances, techniques such as band depth mapping (Clark et al., 1992) are feasible. However, the only difference between a target material and its surroundings is often expressed solely in the continuum. We define the 'continuum' as the reflectance or radiance spanning spectral space between spectral features. Differences in continuum slope and shape can only be determined by reduction techniques which considers the entire spectral range; i.e., techniques such as spectral mixture analysis (Adams et al., 1989) and recently developed techniques which utilize an orthogonal subspace projection operator (Harsanyi, 1993). Two of the three examples considered herein deal with cases where the target material differs from its surroundings only by such a subtle continuum change.
    Keywords: DOCUMENTATION AND INFORMATION SCIENCE
    Type: JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop; p 53-56
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...