ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-26
    Description: Glider observations show a subsurface chlorophyll maximum (SCM) at the base of the seasonal pycnocline in the North Sea during stable summer conditions. A colocated peak in the dissipation rate of turbulent kinetic energy suggests the presence of active turbulence that potentially generates a nutrient flux to fuel the SCM. A one‐dimensional turbulence closure model is used to investigate the dynamics behind this local maximum in turbulent dissipation at the base of the pycnocline (PCB) as well as its associated nutrient fluxes. Based on a number of increasingly idealized forcing setups of the model, we are able to draw the following conclusions: (a) only turbulence generated inside the stratified PCB is able to entrain a tracer (e.g., nutrients) from the bottom mixed layer into the SCM region; (b) surface wind forcing only plays a secondary role during stable summer conditions; (c) interfacial shear from the tide accounts for the majority of turbulence production at the PCB; (d) in stable summer conditions, the strength of the turbulent diapycnal fluxes at the PCB is set by the strength of the anticyclonic component of the tidal currents.
    Description: Plain Language Summary: Many midlatitude shelf seas are vertically stratified in summer, where a warm surface layer sits on top of a cold, dense bottom layer. Both of these layers are unproductive environments for phytoplankton—the bottom layer is light limited, and the surface layer is nutrient‐limited. However, abundant phytoplankton is observed directly at the interface between surface and bottom layers. In order to sustain this phytoplankton, nutrient‐rich bottom water needs to be mixed with interface water. While both wind and tides are major causes for mixing in the coastal ocean, we find that the tides alone provide sufficient stirring at the right place to potentially act as an effective fuel pump for the phytoplankton. Interestingly, it is not the strength of the tides alone that counts, rather the sense of rotation of the tidal currents; rotation opposite to the Earth's spin causes more stirring than rotation along with it.
    Description: Key Points: Turbulence and chlorophyll both peak at the base of the pycnocline on a mid‐latitude shelf. Locally generated turbulence at the pycnocline base is a fuel pump for the subsurface chlorophyll maximum. Amplitude and polarity of the M2 tide govern the local generation of turbulence at the pycnocline base.
    Description: Helmholtz Association
    Description: https://doi.org/10.5281/zenodo.3525787
    Description: https://oceancolor.gsfc.nasa.gov/l3/
    Description: https://www.cen.uni-hamburg.de/icdc/data/ocean/nsbc.html
    Keywords: ddc:551.46 ; shelf seas ; storms ; North Sea ; turbulence ; straification ; marginal stability ; subsurface chlorophyll maximum ; fuel pump ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉For better projections of sea level rise, two things are needed: an improved understanding of the contributing processes and their accurate representation in climate models. A major process is basal melting of ice shelves and glacier tongues by the ocean, which reduces ice sheet stability and increases ice discharge into the ocean. We study marine melting of Greenland's largest floating ice tongue, the 79° North Glacier, using a high‐resolution, 2D‐vertical ocean model. While our fjord model is idealized, the results agree with observations of melt rate and overturning strength. Our setup is the first application of adaptive vertical coordinates to an ice cavity. Their stratification‐zooming allows a vertical resolution finer than 1 m in the entrainment layer of the meltwater plume, which is important for the plume development. We find that the plume development is dominated by entrainment only initially. In the stratified upper part of the cavity, the subglacial plume shows continuous detrainment. It reaches neutral buoyancy near 100 m depth, detaches from the ice, and transports meltwater out of the fjord. Melting almost stops there. In a sensitivity study, we show that the detachment depth depends primarily on stratification. Our results contribute to the understanding of ice–ocean interactions in glacier cavities. Furthermore, we suggest that our modeling approach with stratification‐zooming coordinates will improve the representation of these interactions in global ocean models. Finally, our idealized model topography and forcing are close to a real fjord and completely defined analytically, making the setup an interesting reference case for future model developments.〈/p〉
    Description: Plain Language Summary: The global increase of sea levels is a consequence of human‐induced climate change. It presents a threat to coastal regions and demands action to protect human life and infrastructure near the coast. Planning protective measures requires projections of sea level rise, computed with climate models. We present an approach to improve the simulation of an important contributor to sea level rise: melting of floating ice shelves by ocean circulation. Our modeling approach uses a vertical model grid that evolves over time. The temporal evolution depends on the density structure of the ocean. Large density differences appear just below an ice shelf, where fresh meltwater mixes with salty seawater. The adaptive grid of our model resolves this mixing process in great detail. This is important for an accurate computation of the melt rate and enables us to study in depth the ice shelf–ocean interactions. We study them at the glacier tongue of the 79° North Glacier, which is Greenland's largest ice shelf. The physical understanding gained from our simulations is also applicable to other floating glacier tongues and ice shelves. We suggest that using the presented model technique in global ocean models can improve projections of melting and sea level rise.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Melting of the 79° North Glacier ice tongue by turbulent ocean currents is studied with an idealized 2D‐vertical fjord model〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The subglacial plume behaves like an entraining plume close to the grounding line and like a detraining gravity current further downstream〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉A vertical resolution finer than 1 m is achieved in the subglacial plume by using adaptive vertical coordinates that zoom to stratification〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Academic Exchange Service
    Description: https://doi.org/10.5281/zenodo.7755753
    Description: https://doi.org/10.5281/zenodo.7755908
    Description: https://doi.org/10.5281/zenodo.7741925
    Description: https://doi.org/10.1594/PANGAEA.885358
    Keywords: ddc:551.46 ; numerical model ; glacier fjord ; Greenland ; physical oceanography ; ice melting ; high‐resolution
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-30
    Description: Observations from the global ocean have long confirmed the ubiquity of thermohaline inversions in the upper ocean, often accompanied by a clear signal in biogeochemical properties. Their emergence has been linked to different processes such as double diffusion, mesoscale stirring, frontal subduction, and the recently discussed submesoscale features. This study uses the central Baltic Sea as a natural laboratory to explore the formation of salinity inversions in the thermocline region during summer. We use realistic high‐resolution simulations complemented by field observations to identify the dominant generation mechanism and potential hotspots of their emergence. We propose that the strongly stratified thermocline can host distinct salinity minima during summer conditions resulting primarily from the interaction between lateral surface salinity gradients and wind‐induced differential advection. Since this is a generic mechanism, such salinity inversions can likely constitute a typical feature of the upper ocean in regions with distinct thermoclines and shallow mixed layers.
    Description: Plain Language Summary: The upper ocean is characterized by a well‐mixed surface layer, below which temperature decreases rapidly with depth, forming the so‐called thermocline region. A corresponding salinity increase with depth is typically anticipated for stable density stratification to occur. Temperature and salinity inversions can, however, emerge in the upper ocean. Such thermohaline inversions have been observed in different regions of the world's oceans, and various mechanisms have been proposed to explain their generation. Here, the central basin of the Baltic Sea is used as a natural laboratory to explore the formation of distinct salinity minima in the thermocline region during summer conditions. Using high‐resolution numerical simulations and measurements from a field campaign, we show that inversions are abundant and can emerge throughout the entire basin. They increase with increasing wind speeds and concentrate mainly in regions with strong lateral salinity differences. We propose that thermocline salinity minima can occur during summer when the wind transports saltier water over less saline surface waters. This is a generic mechanism that can therefore be responsible for the formation of the salinity inversions observed worldwide in areas with distinct thermoclines and shallow mixed layers.
    Description: Key Points: Observations collected in the central Baltic Sea during summer indicate patches of distinct salinity minima in the thermocline region. Realistic high‐resolution simulations are used to explore the origin of the salinity minima and to identify the hotspots of their genesis. Lateral surface salinity gradients interacting with wind‐induced differential advection are shown to generate most of the inversions.
    Description: German Research Foundation
    Description: http://doi.io-warnemuende.de/10.12754/data-2022-0001
    Keywords: ddc:551.46 ; salinity inversions ; thermohaline intrusions ; subduction ; submesoscales ; differential advection ; Baltic Sea
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Ecological Modelling, 221 (2). pp. 238-244.
    Publication Date: 2012-12-06
    Description: There is an increasing need to describe cyanobacteria bloom dynamics using ecosystem models. We consider two fundamentally different ways how cyanobacteria are currently implemented: a simple approach without explicit consideration of the life cycle which assumes that cyanobacteria grow due to nitrogen fixation alone and an advanced approach that computes the succession of four different stages of the cyanobacteria life cycle based on internal quotas of energy and nitrogen. To qualitatively and quantitatively intercompare these different approaches and with observations, we use the Baltic Sea ecosystem model ERGOM coupled to the one-dimensional water column model GOTM. Four experiments are carried out: three, using the simple approach with either (a) a prescribed constant minimum production, (b) no minimum value or (c) a prescribed constant minimum concentration, and one with (d) the full predictive life cycle. The model data of 35 years (1970-2005) are analyzed for the timing of the bloom, the interannual variability, the annual mean nitrogen fixation rates and the effect of cyanobacteria on eukaryotic phytoplankton. The results show significant differences. In the climatological seasonal mean, only the advanced approach which resolves the life cycle produces a realistic bloom onset and duration. The interannual variability of blooms is unrealistically small in the experiments with a prescribed minimum value. Annual mean nitrogen fixation rates diverge by up to 30% between the four model solutions. Finally, the representation of the cyanobacteria also influences the seasonal cycle of eukaryotic phytoplankton, i.e., flagellates. This study demonstrates that the way how cyanobacteria are implemented in coupled biological-physical models strongly determines the fluxes into the system and between the individual compartments.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-22
    Description: Objectives: It was intended to investigate the meso-scale and sub-meso-scale dynamics of the upper layers (upper 80 m) in the central Baltic Sea, using towed instruments and acoustic profilers, to better understand the physical conditions for cyanobacteria blooms. Under optimal weather conditions, we intended to carry out 10 one-day quasi-synoptic surveys by cruising in large meandering patterns (see fig. 1) covering areas of 15 X 15 nautical miles or 8 X 8 nautical miles, depending on the survey mode, see below. This cruise was the meso-scale component of the two-ship SUMMIX experiment together with RV Meteor (Physical and biochemical exchange-, mixing- and transformation processes in the central Baltic Sea during summer stratification and their controls on the cyanobacterial summer bloom) which was intended to be located at a fixed position nearby RV Elisabeth Mann Borgese in order to survey the water column in high vertical, spatial and parameter resolution, including biogeochemical experiments on board. In addition to the physical parameters, also vertical and horizontal zooplankton net tows as well as water samples taken by CTD bottles were planned.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-22
    Description: The Total Exchange Flow analysis framework computes consistent bulk values quantifying the estuarine exchange flow using salinity coordinates since salinity is the main contributor to density in estuaries and the salinity budget is entirely controlled by the exchange flow. For deeper and larger estuaries temperature may contribute equally or even more to the density. That is why we included potential temperature as a second coordinate to the Total Exchange Flow analysis framework, which allows gaining insights in the potential temperature-salinity structure of the exchange flow as well as to compute consistent bulk potential temperature and therefore heat exchange values with the ocean. We applied this theory to the exchange flow of the Persian Gulf, a shallow, semienclosed marginal sea, where dominant evaporation leads to the formation of hypersaline and dense Gulf water. This drives an inverse estuarine circulation which is analyzed with special interest on the seasonal cycle of the exchange flow. The exchange flow of the Persian Gulf is numerically simulated with the General Estuarine Transport Model from 1993 to 2016 and validated against observations. Results show that a clear seasonal cycle exists with stronger exchange flow rates in the first half of the year. Furthermore, the composition of the outflowing water is investigated using passive tracers, which mark different surface waters. The results show that in the first half of the year, most outflowing water comes from the southern coast, while in the second half most water originates from the northwestern region.
    Keywords: 551.46 ; Persian Gulf ; Total Exchange Flow ; inverse estuary ; General Estuarine Transport Model ; estuarine circulation
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-23
    Description: The hydrodynamics in estuaries is mainly governed by the competition between a horizontal density gradient, friction, and wind stress. The sensitivity of the estuarine exchange flow to the wind stress increases in the absence of tides, which is investigated here using the example of the weakly tidal Warnow river estuary in the southwestern Baltic Sea—the mouth of which is characterized by strongly varying salinities of 8 to 20 g kg−1. The interaction between a volatile salinity gradient and along-estuary wind forcing is found to cause temporary inversions of the estuarine circulation. Despite the highly dynamic conditions, the applicability of recent theories for isohaline mixing, using the framework of Total Exchange Flow, and the strength of the exchange flow, using a non-dimensional parameter space, could be confirmed. By analyzing salinity fluxes at the mouth of the estuary, a mixing completeness of 84% was calculated for the estuary. Furthermore, inversion of estuarine circulation was typically found for a local Wedderburn number (ratio of non-dimensional wind stress to non-dimensional horizontal density gradient) exceeding 0.33, indicating a high sensitivity to along-estuary wind.
    Keywords: 551.46 ; estuarine circulation ; salt mixing ; wind straining ; Total Exchange Flow
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-05
    Description: The present study aims to estimate effective diahaline turbulent salinity fluxes and diffusivities in numerical model simulations of estuarine scenarios. The underlying method is based on a quantification of salinity mixing per salinity class, which is shown to be twice the turbulent salinity transport across the respective isohaline. Using this relation, the recently derived universal law of estuarine mixing, predicting that average mixing per salinity class is twice the respective salinity times the river run‐off, can be directly derived. The turbulent salinity transport is accurately decomposed into physical (due to the turbulence closure) and numerical (due to truncation errors of the salinity advection scheme) contributions. The effective diahaline diffusivity representative for a salinity class and an estuarine region results as the ratio of the diahaline turbulent salinity transport and the respective (negative) salinity gradient, both integrated over the isohaline area in that region and averaged over a specified period. With this approach, the physical (or numerical) diffusivities are calculated as half of the product of physical (or numerical) mixing and the isohaline volume, divided by the square of the isohaline area. The method for accurately calculating physical and numerical diahaline diffusivities is tested and demonstrated for a three‐dimensional idealized exponential estuary. As a major product of this study, maps of the spatial distribution of the effective diahaline diffusivities are shown for the model estuary.
    Description: Plain Language Summary: Eddy diffusivity determines how intensively concentrations in a fluid are spreading due to turbulent motion. Here, we analyze the diffusivity that spreads salt concentration (i.e., salinity) across a surface of constant salinity (the isohalines), also called effective diahaline diffusivity. A new method is presented that calculates effective diahaline diffusivities based on the specific volume between two specified isohalines, on the salinity mixing within this volume as well as on the surface area of the isohalines. We define mixing as the rate of destruction of salinity variance per unit volume due to turbulent mixing processes. The method applies to computer models of ocean dynamics on scales ranging from coastal to global. In such models, the mixing is determined by statistical mathematical equations of turbulent processes, which is the so‐called physical mixing. In models, additional (numerical) mixing occurs due to numerical inaccuracies of algorithms that move around water masses passively with the currents, a process called advection. Using our method, the total effective diffusivity determined for each isohaline surface can be accurately separated into contributions from physical mixing and numerical mixing. We demonstrate the functioning of the new method for an idealized model simulation of an estuary.
    Description: Key Points: Mixing and volume per salinity class determine effective diahaline diffusivity. Effective diahaline diffusivity is split into physical and numerical contributions. In an idealized estuary, largest effective diffusivities are found in the brackish waters of the navigational channel.
    Keywords: 551.9 ; estuaries ; salinity mixing
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-04
    Description: Processes of stratification and destratification in the German Bight region of fresh water influence (ROFI) are investigated following an extreme river discharge event in June 2013. For this purpose, a high‐resolution baroclinic ocean model is set up and validated against field data. The model results are used to study the temporal and spatial variability of stratification and the duration of persistent stratification in 2013. The relevant processes affecting stratification are investigated by analyzing the potential energy anomaly budget, with a focus on mixing and tidal straining. It is shown that the stratification in the German Bight is highly affected by the spring‐neap tidal cycle, with generally less stratification at spring tides due to dominant tidal mixing. It is also shown that the location of the river plume can modify this pattern. During spring tides, if the river plume is confined to the eastern region, stratification decreases significantly, as expected, due to the dominance of mixing over tidal straining. On the other hand, if the river plume moves toward deeper regions at spring tides, strong tidal straining becomes present. In this condition, mixing is weak, and the dominant tidal straining results in persistent stratification.
    Description: Key Points: Processes impacting the German Bight stratification are investigated using a high‐resolution baroclinic model. The position of the river plume highly affects the contribution of tidal straining and mixing to changes in stratification. Strong tidal straining can result in persistent stratification even during spring tides.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: German Environment Agency http://dx.doi.org/10.13039/501100010809
    Keywords: 551.46 ; stratification ; tidal‐straining ; mixing ; extreme river discharge ; numerical model ; German Bight ROFI
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-22
    Description: Basal melting of marine‐terminating glaciers, through its impact on the forces that control the flow of the glaciers, is one of the major factors determining sea level rise in a world of global warming. Detailed quantitative understanding of dynamic and thermodynamic processes in melt‐water plumes underneath the ice‐ocean interface is essential for calculating the subglacial melt rate. The aim of this study is therefore to develop a numerical model of high spatial and process resolution to consistently reproduce the transports of heat and salt from the ambient water across the plume into the glacial ice. Based on boundary layer relations for momentum and tracers, stationary analytical solutions for the vertical structure of subglacial non‐rotational plumes are derived, including entrainment at the plume base. These solutions are used to develop and test convergent numerical formulations for the momentum and tracer fluxes across the ice‐ocean interface. After implementation of these formulations into a water‐column model coupled to a second‐moment turbulence closure model, simulations of a transient rotational subglacial plume are performed. The simulated entrainment rate of ambient water entering the plume at its base is compared to existing entrainment parameterizations based on bulk properties of the plume. A sensitivity study with variations of interfacial slope, interfacial roughness and ambient water temperature reveals substantial performance differences between these bulk formulations. An existing entrainment parameterization based on the Froude number and the Ekman number proves to have the highest predictive skill. Recalibration to subglacial plumes using a variable drag coefficient further improves its performance.
    Description: Plain Language Summary: In a world of global warming, the melting of glaciers terminating as floating ice tongues into the oceans of Arctic and Antarctic regions allows those glaciers to flow faster and hence to make a considerable contribution to global mean sea‐level rise. Underneath the ice‐ocean interface, turbulent currents of the order of 10 m thickness (so‐called plumes) develop that transport the melt water from the grounding line where the glacier enters the ocean toward the calving front that marks the seaward end of the glacier. At its base, ambient relatively warm and salty ocean water is mixed into the plumes and is vertically transported toward the ice‐ocean interface, where the melting is increased due to the additional heat supply. Understanding these processes is essential for their incorporation into computer models for the prediction of such melt processes. In this study, an accurate simulation model for the water column is constructed that is able to consistently reproduce these processes. The algorithms developed here are proven to provide reliable results also for models with only a few grid points across the plume and can therefore be implemented into climate models with surface‐following coordinates to more accurately simulate future scenarios of sea level rise.
    Description: Key Points: A vertically resolving model with second‐moment turbulence closure has been constructed for subglacial plumes. Convergent numerical formulations for the ocean‐to‐ice fluxes of momentum, freshwater and heat have been derived from an analytical model. Model results are consistent with bulk parameterizations for the entrainment of ambient water.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: https://doi.org/10.5281/zenodo.6203838
    Keywords: ddc:550
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...