ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
Collection
Publisher
Years
  • 1
    Publication Date: 2019-06-28
    Description: An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.
    Keywords: AERODYNAMICS
    Type: NASA-CR-3999 , NAS 1.26:3999
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A 'nonintrusive', multielement heat-transfer sensor was designed to study laminar-separation bubble characteristics on a NASA LRN (1)-1010 low-Reynolds number airfoil. The sensor consists of 30 individual nickel films, vacuum-deposited on a thin substrate (0.05 mm) that was bonded to the airfoil model with the sensor array placed streamwise on the airfoil upper surface. Experiments were conducted on a 15-cm chord model in the 50,000-300,000 chord Reynolds number range. Time history as well as spectral analysis of signals from surface film gauges were simultaneously obtained to determine the location of laminar separation and the subsequent behavior of the separated shear layer. In addition to the successful determination of laminar separation, a new phenomenon involving a large phase shift in dynamic shear stresses across the separation and reattachment points was observed.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 87-1271
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is performed by electromagnetic levitation. The natural oscillation frequency of the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the k-epsilon turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic aerothermodynamic characteristics of the X-23/X-24A derived X-38 crew return vehicle are being evaluated in various wind tunnels in support of this effort. Aerothermodynamic data from two NASA hypersonic tunnels at Mach 6 and Mach 10 has been obtained with cast ceramic models and a thermographic phosphorus digital imaging system. General windward surface heating features are described based on experimental surface heating images and surface oil flow patterns for the nominal hypersonic aerodynamic orientation. Body flap reattachment heating levels are examined. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with this data.
    Keywords: Aerodynamics
    Type: AIAA Paper 97-2475 , 32nd AIAA Thermophysics Conference; Jun 23, 1997 - Jun 25, 1997; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: This article details an effort to improve the understanding and prediction of turbulent flow inside a droplet of molten metal levitated in an electromagnetic field. It is shown that the flow field in a test case, a nickel droplet levitated under microgravity conditions, is in the transitional regime between laminar and turbulent flow. Past research efforts have used laminar, enhanced viscosity, and k-epsilon turbulence models to describe the flow. The method highlighted in our study is the renormalization group (RNG) algorithm. We show that an accurate description of the turbulent eddy viscosity is critical in order to obtain realistic velocity fields, and that the turbulent eddy viscosity cannot be uniform in levitated droplets. The RNG method does not impose isotropic length or time scales on the flow field, thus allowing such nonuniform features to be captured. A number of other materials processing applications exhibit similarly complex flow characteristics, such as highly recirculating, transitional, and free surface flows, for which this modeling approach may prove useful.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Oscillating droplets are of interest in a number of disciplines. A practical application is the oscillating drop method, which is a technique for measuring surface tension and viscosity of liquid metals. It is especially suited to undercooled and highly reactive metals, because it is usually performed by electromagnetic levitation. The natural oscillation frequency a f the droplets is related to the surface tension of the material, and the decay of oscillations is related to its viscosity. The fluid flow inside the droplet must be laminar in order for this technique to yield good results. Because no experimental method has yet been developed to visualize flow in electromagnetically-levitated oscillating metal droplets, mathematical modeling is required to determine whether or not turbulence occurs. Three mathematical models of the flow: (1) assuming laminar conditions, (2) using the turbulence model, and (3) using the RNG turbulence model, respectively, are compared and contrasted to determine the physical characteristics of the flow. It is concluded that the RNG model is the best suited for describing this problem. The goal of the presented work was to characterize internal flow in an oscillating droplet of liquid metal, and to verify the accuracy of the characterization by comparing calculated surface tension and viscosity values to experimentally-obtained results.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-12
    Description: Metals constitute an important group of abiotic stressors that elicit stress responses in marine algae that include the production of reactive oxygen species (ROS). Silver (Ag) is a highly toxic metal to organisms but despite this there are relatively few studies on how it affects marine macroalgae (seaweeds). In a landmark study published in 1977 the first information was provided on the accumulation of Ag in Fucus spp. (Phaeophyceae) from the Looe estuary, located in south-west England, an area with a long history of mining activity. In the present study, the estuary has been re-visited and the patterns of Ag accumulation in two Fucus spp. and sediment re-examined after 35 years. We conclude that Ag concentrations in sediment and macroalgae from specific sites within the catchment remain high, but more generally sediment concentrations have declined by approximately 65 % and the dissolved, bioavailable fraction by 24 % over this period. In addition, from laboratory studies we provide data on the speciation and toxic effects of Ag under different salinity regimes in the euryhaline brown seaweed, Fucus ceranoides. From these exposure experiments, it was found that with increasing Ag concentrations growth was inhibited and lipid peroxidation associated with ROS production increased. The magnitude of the toxic effects was greater at a salinity of 10 than 28 psu which reflects the greater bioavailability of the toxic species of Ag (Ag+ and AgCl0) at reduced salinities. These findings emphasise the importance of investigating the effects of metal pollution in conjunction with other, natural, environmental stressors such as salinity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...