ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1
    Publication Date: 2019-09-23
    Description: Local reservoir ages are often estimated from the difference between the radiocarbon ages of aquatic material and associated terrestrial samples for which no reservoir effect is expected. Frequently, the selected aquatic material consists of bivalve shells that are typically well preserved in the archaeological record. For instance, large shell middens attest to the importance of mussel consumption at both coastal and inland sites. However, different physiological mechanisms associated with tissue and shell growth may result in differences in reservoir effects between the surviving component (shell) and the component relevant to dietary reservoir effects in consumers (tissue). The current study examines bivalve tissue-shell age differences both from freshwater and marine contexts close to archaeological sites where human consumption of mollusks has been attested. Results exhibited significant 14C age differences between bivalve tissue and shell in a freshwater context. In a marine context, no significant bivalve tissue-shell age differences were observed. The results also showed that riverine and lacustrine shells show large and variable freshwater reservoir effects. The results have important implications for establishing local reservoir effects especially in a freshwater environment. For good a priori knowledge of expected 14C differences in organic and inorganic water, carbon is thus necessary. Furthermore, the high variability in freshwater shell 14C ages implies the need for representative sampling from the archaeological record.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-13
    Description: The Pan-African Damara orogen of Namibia is characterized by large-scale granitoid intrusions. Two plutons in the Northern Central Zone (NCZ) of the Damara orogen within the Okombahe district have U–Pb zircon ages of 576.2 ± 5.7 Ma and 570.9 ± 4.9 Ma that predate the time of high grade regional metamorphism which occurred between 540 and 480Ma. The intrusive rocks are magnesian high-K alkali-calcic granodiorites to granites, are enriched in HFSE and REE, and have undergone only a limited degree of fractional crystallization, and do not contain xenoliths of local country rocks. Initial isotope compositions are unevolvedwith 87Sr/86Sr between 0.704 and 0.706 and initial εNd ranging from −1.9 to−3.9. Lead isotopes are radiogenic (206Pb/204Pb: 18.32 to 18.61, 207Pb/204Pb: 15.61 to 15.69 and 208Pb/204Pb: 37.87 to 39.29) with variable 207Pb/204Pb ratios at almost constant 206Pb/204Pb and 208Pb/204Pb ratios, suggesting a derivation from ancient sources with comparatively high U/Pb but low Th/Pb ratios. The limited variations in Sr, Nd and Pb isotopes were not caused by crustal contamination or magma mixing, but instead reflect source heterogeneities. Strontium and Nd isotope compositions suggest mafic lithologies similar to amphibolites from the Kalahari Craton basement as potential sources. A comparison with amphibolite melting experiments confirms the possible derivation of the granodiorites from an amphibolitic source. Calculated maximum zircon saturation temperatures at insignificant amounts of inherited zircon, indicate intrusion temperatures of up to 900 °C. Apatite saturation temperatures are higher, up to ca. 950 °C. Pressures of 5 to 10 kbar are determined through Qz-Ab-Or systematics and are interpreted as minimum pressures at the site of melting suggesting that the granodiorites/granites represent high temperature partial melts generated in the lower crust. Although there are some compositional similarities with granites generated in subduction zones, radiogenic Pb isotope ratios and high δ18O values suggest that reprocessed amphibolitic rocks are more likely sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: State-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...