ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (29)
  • 1
    Publication Date: 2013-08-29
    Description: As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of radiative and Auger rates for transitions involving the K-vacancy states in Fe XXIV. By making use of several computational codes, a detailed study is carried out of orbital representation, configuration interaction, relativistic corrections, cancellation effects, and fine tuning. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%.
    Keywords: Atomic and Molecular Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: This viewgraph document reviews the atomic calculations and the measurements from the laboratory that are relevant to our understanding of X-Ray Warm Absorbers. Included is a brief discussion of the theoretical and the experimental tools. Also included is a discussion of the challenges, and calculations relevant to dielectronic recombination, photoionization cross sections, and collisional ionization. A review of the models is included, and the sequence that the models were applied.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: We report extensive calculations of the decay properties of fine-structure K-vacancy levels in Fe X-Fe XVII. A large set of level energies, wavelengths, radiative and Auger rates, and fluorescence yields has been computed using three different standard atomic codes, namely Cowan's HFR, AUTOSTRUCTURE and the Breit-Pauli R-matrix package. This multi-code approach is used to the study the effects of core relaxation, configuration interaction and the Breit interaction, and enables the estimate of statistical accuracy ratings. The Ksigma and KLL Auger widths have been found to be nearly independent of both the outer-electron configuration and electron occupancy keeping a constant ratio of 1.53 +/- 0.06. By comparing with previous theoretical and measured wavelengths, the accuracy of the present set is determined to be within 2 m Angstrom. Also, the good agreement found between the different radiative and Auger data sets that have been computed allow us to propose with confidence an accuracy rating of 20% for the line fluorescence yields greater than 0.01. Emission and absorption spectral features are predicted finding good correlation with measurements in both laboratory and astrophysical plasmas.
    Keywords: Nuclear Physics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of atomic data for K-vacancy states in Fe XXIV. The data sets include: (i) energy levels, line wavelengths, radiative and Auger rates; (ii) inner-shell electron impact excitation rates and (iii) fine structure inner-shell photoionization cross sections. The calculations of energy levels and radiative and Auger rates have involved a detailed study of orbital representations, core relaxation, configuration interaction, relativistic corrections, cancellation effects and semi-empirical corrections. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%. The calculations of collisional excitation and photoionization cross sections take into account the effects of radiation and spectator Auger dampings. In the former, these effects cause significant attenuation of resonances leading to a good agreement with a simpler method where resonances are excluded. In the latter, resonances converging to the K threshold display symmetric profiles of constant width that causes edge smearing.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Long linear, filamentary ejecta, are found to move at very high velocity external to the Homunculus, the circumstellar hourglass-shaped ejecta surrounding Eta Carinae. The origin of the strings is a puzzle. As an example, the Weigelt Blobs have N at 10X solar and C, O at 0.01X solar abundance, along with He/H significantly enhanced. This abundance pattern is evidence for extreme CNO-processing. Similarly, the Strontium Filament has Ti/Ni at 100X solar, presumably due to the lack of oxygen to form Ti-oxide precipitates onto dust grains. We have obtained 2-D spectra with the HST/STIS of the Strontium Filament and a portion of a string. These deep spectral exposures, at moderate dispersion, span much of the near red spectral region from 5000 to 9000A. We have identified twelve emission lines in these spectra with proper velocities and spatial structure of this string and obtained line ratios for [Ca II] (7293/7325A) and [Fe Ill (7157/8619A) which are useful for determining physical conditions in this nebulosity. In an attempt to use the [Ca II] ratio to determine the physical parameters, and ultimately the abundances in the strings, we have constructed a statistical equilibrium model for Ca II , including radiative and collisional rates. These results incorporate our newly calculated atomic data for levels n = 3,4,5 and 6 configurations of Ca II. The aim is to compute the [Ca II] line ratios and use them as a diagnostic of the physical parameters. Using the [Fe II] ratio we find that for Te=10,000 K, the electron density is Ne approx.10(exp 6)/cu cm. We plan to use the [Ca II] ratio to confirm this result. Then, we will extend the use of this multilevel model Ca II atom to study the physical conditions of the Strontium filament where eight lines of Ca II, both allowed and forbidden, had been identified. With the physical conditions determined, we will be able to derive reliable estimates for the gas phase abundances in the strings.
    Keywords: Astronomy
    Type: AAS 207th Meeting: Massive Binaries; Jan 08, 2006 - Jan 12, 2006; Washington, DC; United States|Bulletin of the American Astronomical Society; 37; 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: X-ray absorption and emission features arising from the inner-shell transitions in iron are of practical importance in astrophysics due to the Fe cosmic abundance and to the absence of traits from other elements in the nearby spectrum. As a result, the strengths and energies of such features can constrain the ionization stage, elemental abundance, and column density of the gas in the vicinity of the exotic cosmic objects, e.g. active galactic nuclei (AGN) and galactic black hole candidates. Although the observational technology in X-ray astronomy is still evolving and currently lacks high spectroscopic resolution, the astrophysical models have been based on atomic calculations that predict a sudden and high step-like increase of the cross section at the K-shell threshold (see for instance. New Breit-Pauli R-matrix calculations of the photoionization cross section of the ground states of Fe XVII in the region near the K threshold are presented. They strongly support the view that the previously assumed sharp edge behaviour is not correct. The latter has been caused by the neglect of spectator Auger channels in the decay of the resonances converging to the K threshold. These decay channels include the dominant KLL channels and give rise to constant widths (independent of n). As a consequence, these series display damped Lorentzian components that rapidly blend to impose continuity at threshold, thus reformatting the previously held picture of the edge. Apparent broadened iron edges detected in the spectra of AGN and galactic black hole candidates seem to indicate that these quantum effects may be at least partially responsible for the observed broadening.
    Keywords: Atomic and Molecular Physics
    Type: Conference Organizing Committee: ROMA X-2002; May 31, 2002; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.
    Keywords: Astronomy
    Type: GSFC.JA.00462.2012 , The Astrophysical Jouranl Supplement Series; 192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN8414
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...