ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
Collection
Language
Years
  • 1
    facet.materialart.
    Unknown
    In:  (Diploma thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 88 pp
    Publication Date: 2021-09-23
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: MILAN was a multidisciplinary, international study examining how the diel variability of sea-surface microlayer biogeochemical properties potentially impacts ocean-atmosphere interaction, in order to improve our understanding of this globally important process. The sea-surface microlayer (SML) at the air-sea interface is 〈 1 mm deep but it is physically, chemically and biologically distinct from the underlying water and the atmosphere above. Wind-driven turbulence and solar radiation are important drivers of SML physical and biogeochemical properties. Given that the SML is involved in all ocean-atmosphere exchanges of mass and energy, its response to solar radiation, especially in relation to how it regulates the air-sea exchange of climate-relevant gases and aerosols, is surprisingly poorly characterised. MILAN (sea-surface MIcroLAyer at Night) was an international, multidisciplinary campaign designed to specifically address this issue. In spring 2017, we deployed diverse sampling platforms (research vessels, radio-controlled catamaran, free-drifting buoy) to study full diel cycles in the coastal North Sea SML and in underlying water, and installed a land-based aerosol sampler. We also carried out concurrent ex situ experiments using several microsensors, a laboratory gas exchange tank, a solar simulator, and a sea spray simulation chamber. In this paper we outline the diversity of approaches employed and some initial results obtained during MILAN. Our observations of diel SML variability, e.g. the influence of changing solar radiation on the quantity and quality of organic material, and diel changes in wind intensity primarily forcing air-sea CO2 exchange, underline the value and the need of multidisciplinary campaigns for integrating SML complexity into the context of air-sea interaction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-14
    Description: Subterranean estuaries are connective zones between inland aquifers and the open sea where terrestrial freshwater and circulating seawater mix and undergo major biogeochemical changes. They are biogeochemical reactors that modify groundwater chemistry prior to discharge into the sea. We propose that subterranean estuaries of high-energy beaches are particularly dynamic environments, where the effect of the dynamic boundary conditions propagates tens of meters into the subsurface, leading to strong spatio-temporal variability of geochemical conditions. We hypothesize that they form a unique habitat with an adapted microbial community unlike other typically more stable subsurface environments. So far, however, studies concerning subterranean estuaries of high-energy beaches have been rare and therefore their functioning, and their importance for coastal ecosystems, as well as for carbon, nutrient and trace element cycling, is little understood. We are addressing this knowledge gap within the interdisciplinary research project DynaDeep by studying the combined effect of surface (hydro- and morphodynamics) on subsurface processes (groundwater flow and transport, biogeochemical reactions, microbiology). A unique subterranean estuary observatory was established on the northern beach of the island of Spiekeroog facing the North Sea, serving as an exemplary high-energy research site and model system. It consists of fixed and permanent infrastructure such as a pole with measuring devices, multi-level groundwater wells and an electrode chain. This forms the base for autonomous measurements, regular repeated sampling, interdisciplinary field campaigns and experimental work, all of which are integrated via mathematical modelling to understand and quantify the functioning of the biogeochemical reactor. First results show that the DynaDeep observatory is collecting the intended spatially and temporally resolved morphological, sedimentological and biogeochemical data. Samples and data are further processed ex-situ and combined with experiments and modelling. Ultimately, DynaDeep aims at elucidating the global relevance of these common but overlooked environments.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-03
    Description: We examine the relative dispersion and the contribution of tides on the relative diffusivities of surface drifters in the North Sea. The drifters are released in two clusters, yielding 43 pairs, in the vicinity of a tidal mixing front in the German Bight, which is located in the southeastern area of the North Sea. Both clusters indicate decreasing dispersion when crossing the tidal mixing front, followed by exponentially increasing dispersion with e-folding times of 0.5 days for Cluster 1 and 0.3 days for Cluster 2. A transition of the dispersion regimes is observed at scales of the order of the Rossby radius of deformation (10 km). After that, the relative dispersion grows with a power-law dependency with a short period of ballistic dispersion (quadratic growth), followed by a Richardson regime (cubic growth) in the final phase. Scale-dependent metrics such as the relative diffusivities are consistent with these findings, while the analysis of the finite-scale Lyapunov exponents (FSLEs) shows contradictory results for the submesoscales. In summary, the analysis of various statistical Lagrangian metrics suggests that tracer stirring at the submesoscales is nonlocal and becomes local at separation scales larger than 10 km. The analysis of meridional and zonal dispersion components indicates anisotropic dispersion at the submesoscales, which changes into isotropic dispersion on the mesoscales. Spectral analysis of the relative diffusivity gives evidence that semidiurnal and shallow-water tides influence relative diffusivity at the mesoscales, especially for drifter separations above 50 km.
    Keywords: 551.46 ; North Sea ; drifter dispersion
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...