ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (2)
  • Wiley  (2)
  • American Physical Society (APS)
  • Genetics Society of America (GSA)
Sammlung
Datenquelle
Verlag/Herausgeber
  • Wiley  (2)
  • American Physical Society (APS)
  • Genetics Society of America (GSA)
  • Annual Reviews Inc.  (1)
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: 1. Different components of the climate system have been shown to affect temporal dynamics in natural plankton communities on scales varying from days to years. The seasonal dynamics in temperate lake plankton communities, with emphasis on both physical and biological forcing factors, were captured in the 1980s in a conceptual framework, the Plankton Ecology Group (PEG) model. 2. Taking the PEG model as our starting point, we discuss anticipated changes in seasonal and long-term plankton dynamics and extend this model to other climate regions, particularly polar and tropical latitudes. Based on our improved post-PEG understanding of plankton dynamics, we also evaluate the role of microbial plankton, parasites and fish in governing plankton dynamics and distribution. 3. In polar lakes, there is usually just a single peak in plankton biomass in summer. Lengthening of the growing season under warmer conditions may lead to higher and more prolonged phytoplankton productivity. Climate-induced increases in nutrient loading in these oligotrophic waters may contribute to higher phytoplankton biomass and subsequent higher zooplankton and fish productivity. 4. In temperate lakes, a seasonal pattern with two plankton biomass peaks – in spring and summer – can shift to one with a single but longer and larger biomass peak as nutrient loading increases, with associated higher populations of zooplanktivorous fish. Climate change will exacerbate these trends by increasing nutrient loading through increased internal nutrient inputs (due to warming) and increased catchment inputs (in the case of more precipitation). 5. In tropical systems, temporal variability in precipitation can be an important driver of the seasonal development of plankton. Increases in precipitation intensity may reset the seasonal dynamics of plankton communities and favour species adapted to highly variable environments. The existing intense predation by fish on larger zooplankters may increase further, resulting in a perennially low zooplankton biomass. 6. Bacteria were not included in the original PEG model. Seasonally, bacteria vary less than the phytoplankton but often follow its patterns, particularly in colder lakes. In warmer lakes, and with future warming, a greater influx of allochthonous carbon may obscure this pattern. 7. Our analyses indicate that the consequences of climate change for plankton dynamics are, to a large extent, system specific, depending on characteristics such as food-web structure and nutrient loading. Indirect effects through nutrient loading may be more important than direct effects of temperature increase, especially for phytoplankton. However, with warming a general picture emerges of increases in bacterivory, greater cyanobacterial dominance and smaller-bodied zooplankton that are more heavily impacted by fish predation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-23
    Beschreibung: Summary - In our recent contribution to the special issue on plankton dynamics in a fast-changing world, we outlined some general predictions of plankton dynamics in different climate regions now and in future, building on the Plankton Ecology Group (PEG) model (de Senerpont Domis et al., 2013). - We proposed a stylised version of plankton dynamics in Fig. 3 of our article and stated that these patterns need to be further elaborated. Our figure displays annual plankton dynamics now and in future in oligotrophic, mesotrophic and eutrophic lakes in arctic, temperate and tropical climate zones. - We fully agree with Sarmento, Amado & Descy (2013) that more data on tropical regions are needed, and we are looking forward to the emergence of published data from tropical regions to extend our still-limited understanding of plankton dynamics in these regions. - Sarmento et al. (2013) did not agree with our predictions on plankton dynamics for hydrology-driven water systems in the tropics. Unfortunately, however, Sarmento et al. (2013) did not substantiate their statements with the much-needed data on plankton dynamics in the tropics. Moreover, they merely provide an overview of precipitation patterns in the tropics, not an alternative hypothesis for our predictions.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...