ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-02-01
    Description: Atlantis II Deep, a submarine basin of the Red Sea, is noteworthy because of its hydrothermally active brine pools. High-resolution temperature records from Poseidon Cruise during February 2011 revealed small steps thermal staircase in the lower transition zone from ≈2002 to 2008/2009 m depth at stations. Four vertically well-mixed convective layers, lower convective layer (LCL) and upper convective layers (UCL1–3), separated by high-temperature gradients at the interfaces were observed. The temperature of the layers UCL1–3 has dropped between 2008 and 2011. The top of UCL3 extends to about 2008/2009 m at stations and its average thickness has increased from 3.3 ± 0.5 m in 1992 to 7 m in 2011, whereas the thickness of layers UCL1–2 has decreased from 25.2 ± 0.3 m to 19.8 m and from 16.4 ± 0.5 m to 14.7 m, respectively, during this time. The upward buoyancy flux is 0.032 to 0.038 × 10−7 m2 s−3 which gives migration speed of UCL3 layer from 0.1 to 0.12 m year−1. With this speed, the thermal staircase ≈6 m thick will merge with UCL3 in 50 to 60 years increasing the thickness from 7 m to nearly 13 m.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Sea-ice ecosystems are among the most extensive of Earth’s habitats; yet its autotrophic and heterotrophic activities remain poorly constrained. We employed the in situ aquatic eddy-covariance (AEC) O2 flux method and laboratory incubation techniques (H14CO3−, [3H] thymidine and [3H] leucine) to assess productivity in Arctic sea-ice using different methods, in conditions ranging from land-fast ice during winter, to pack ice within the central Arctic Ocean during summer. Laboratory tracer measurements resolved rates of bacterial C demand of 0.003–0.166 mmol C m−2 day−1 and primary productivity rates of 0.008–0.125 mmol C m−2 day−1 for the different ice floes. Pack ice in the central Arctic Ocean was overall net autotrophic (0.002–0.063 mmol C m−2 day−1), whereas winter land-fast ice was net heterotrophic (− 0.155 mmol C m−2 day−1). AEC measurements resolved an uptake of O2 by the bottom-ice environment, from ~ − 2 mmol O2 m−2 day−1 under winter land-fast ice to~ − 6 mmol O2 m−2 day−1 under summer pack ice. Flux of O2-deplete meltwater and changes in water flow velocity masked potential biological-mediated activity. AEC estimates of primary productivity were only possible at one study location. Here, productivity rates of 1.3 ± 0.9 mmol O2 m−2 day−1, much larger than concurrent laboratory tracer estimates (0.03 mmol C m−2 day−1), indicate that ice algal production and its importance within the marine Arctic could be underestimated using traditional approaches. Given careful flux interpretation and with further development, the AEC technique represents a promising new tool for assessing oxygen dynamics and sea-ice productivity in ice-covered regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...