ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-13
    Description: Although rising global sea levels will affect the shape of coastlines over the coming decades1, 2, the most severe and catastrophic shoreline changes occur as a consequence of local and regional-scale processes. Changes in sediment supply3 and deltaic subsidence4, 5, both natural or anthropogenic, and the occurrences of tropical cyclones4, 5 and tsunamis6 have been shown to be the leading controls on coastal erosion. Here, we use satellite images of South American mangrove-colonized mud banks collected over the past twenty years to reconstruct changes in the extent of the shoreline between the Amazon and Orinoco rivers. The observed timing of the redistribution of sediment and migration of the mud banks along the 1,500 km muddy coast suggests the dominant control of ocean forcing by the 18.6 year nodal tidal cycle7. Other factors affecting sea level such as global warming or El Niño and La Niña events show only secondary influences on the recorded changes. In the coming decade, the 18.6 year cycle will result in an increase of mean high water levels of 6 cm along the coast of French Guiana, which will lead to a 90 m shoreline retreat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 363 (6428). p. 405.
    Publication Date: 2017-08-03
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-11
    Description: There has been concern about recent temperature trends and the future effects of CO2 concentrations in the atmosphere1,2; but instrumental records only cover a few decades to a few centuries and it is essential that proxy data sources, such as pollen spectra from peats and lake sediments, be carefully interpreted as climate records. Several workers have shown statistically significant associations between the modern pollen rain and climatic parameters, an approach that by-passes the recognition of pollen/vegetation units. Statistically defined equations that associate abiotic and biotic elements are called transfer functions. We report here on the application of transfer function equations to nine middle and late Holocene peat and lake sediment sequences from northern Canada (Fig. 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-16
    Description: ROOTH proposed that the Younger Dryas cold episode, which chilled the North Atlantic region from 11,000 to 10,000 yr BP, was initiated by a diversion of meltwater from the Mississippi drainage to the St Lawrence drainage system. The link between these events is postulated to be a turnoff, during the Younger Dryas cold episode, of the North Atlantic's conveyor-belt circulation system which currently supplies an enormous amount of heat to the atmosphere over the North Atlantic region2. This turnoff is attributed to a reduction in surface-water salinity, and hence also in density, of the waters in the region where North Atlantic Deep Water (NADW) now forms. Here we present oxygen isotope and accelerator radiocarbon measurements on planktonic foraminifera from Orca Basin core EN32-PC4 which reveal a significant reduction in meltwater flow through the Mississippi River to the Gulf of Mexico from about 11,200 to 10,000 radiocarbon years ago. This finding is consistent with the record for Lake Agassiz which indicates that the meltwater from the southwestern margin of the Laurentide Ice Sheet was diverted to the northern Atlantic Ocean through the St Lawrence valley during the interval from ~11,000 to 10,000 years before present (yr BP).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...