ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Elsevier  (4)
  • 1
    Publication Date: 2019-02-01
    Description: A vast ocean basin has spanned the region between the Americas, Asia and Australasia for well over 100 Myr, represented today by the Pacific Ocean. Its evolution includes a number of plate fragmentation and plate capture events, such as the formation of the Vancouver, Nazca, and Cocos plates from the break-up of the Farallon plate, and the incorporation of the Bellingshausen, Kula, and Aluk (Phoenix) plates, which have been studied individually, but never been synthesised into one coherent model of ocean basin evolution. Previous regional tectonic models of the Pacific typically restrict their scope to either the North or South Pacific, and global kinematic models fail to incorporate some of the complexities in the Pacific plate evolution (e.g. the independent motion of the Bellingshausen and Aluk plates), thereby limiting their usefulness for understanding tectonic events and processes occurring in the Pacific Ocean perimeter. We derive relative plate motions (with 95% uncertainties) for the Pacific–Farallon/Vancouver, Kula–Pacific, Bellingshausen–Pacific, and early Pacific–West Antarctic spreading systems, based on recent data including marine gravity anomalies, well-constrained fracture zone traces and a large compilation of magnetic anomaly identifications. We find our well-constrained relative plate motions result in a good match to the fracture zone traces and magnetic anomaly identifications in both the North and South Pacific. In conjunction with recently published and well-constrained relative plate motions for other Pacific spreading systems (e.g. Aluk–West Antarctic, Pacific-Cocos, recent Pacific–West Antarctic spreading), we explore variations in the age of the oceanic crust, seafloor spreading rates and crustal accretion and find considerable refinements have been made in the central and southern Pacific. Asymmetries in crustal accretion within the overall Pacific basin (where both flanks of the spreading system are preserved) have typically deviated less than 5% from symmetry, and large variations in crustal accretion along the southern East Pacific Rise (i.e. Pacific–Nazca/Farallon spreading) appear to be unique to this spreading corridor. Through a relative plate motion circuit, we explore the implied convergence history along the North and South Americas, where we find that the inclusion of small tectonic plate fragments such as the Aluk plate are critical for reconciling the history of convergence with onshore geological evidence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world’s most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2cm/s) than the rest of the global ocean (1.1cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10–15cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest o.f the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current’s susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-02
    Description: Highlights • Compilation of rifting events in the Neoproterozoic • Analysis of continental arc, continental rift and connectedness of continental lithosphere for the last 1 Ga • Two stage supercontinent cycle may better explain changes in the connectedness of continental lithosphere • Extraversion and introversion models of successive supercontinents occur on different timescales Abstract The extent of continental rifts and subduction zones through deep geological time provides insights into the mechanisms behind supercontinent cycles and the long term evolution of the mantle. However, previous compilations have stopped short of mapping the locations of rifts and subduction zones continuously since the Neoproterozoic and within a self-consistent plate kinematic framework. Using recently published plate models with continuously closing boundaries for the Neoproterozoic and Phanerozoic, we estimate how rift and peri-continental subduction length vary from 1 Ga to present and test hypotheses pertaining to the supercontinent cycle and supercontinent breakup. We extract measures of continental perimeter-to-area ratio as a proxy for the existence of a supercontinent, where during times of supercontinent existence the perimeter-to-area ratio should be low, and during assembly and dispersal it should be high. The amalgamation of Gondwana is clearly represented by changes in the length of peri-continental subduction and the breakup of Rodinia and Pangea by changes in rift lengths. The assembly of Pangea is not clearly defined using plate boundary lengths, likely because its formation resulted from the collision of only two large continents. Instead the assembly of Gondwana (ca. 520 Ma) marks the most prominent change in arc length and perimeter-to-area ratio during the last billion years suggesting that Gondwana during the Early Palaeozoic could explicitly be considered part of a Phanerozoic supercontinent. Consequently, the traditional understanding of the supercontinent cycle, in terms of supercontinent existence for short periods of time before dispersal and re-accretion, may be inadequate to fully describe the cycle. Instead, either a two-stage supercontinent cycle could be a more appropriate concept, or alternatively the time period of 1 to 0 Ga has to be considered as being dominated by supercontinent existence, with brief periods of dispersal and amalgamation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-02
    Description: Even though it is well accepted that the Earth's surface topography has been affected by mantle-convection induced dynamic topography, its magnitude and time-dependence remain controversial. The dynamic influence to topographic change along continental margins is particularly difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. We follow a three-fold approach to estimate dynamic topographic change along passive margins based on a set of seven global mantle convection models. We first demonstrate that a geodynamic forward model that includes adiabatic and viscous heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2–3). We then combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75–100% in the Cretaceous. Regions that have been strongly affected by mantle plumes are generally not captured well in our models, as plumes are suppressed in most of them, and our models with dynamically evolving plumes do not replicate the location and timing of observed plume products. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end-members of dynamic topography evolution along passive margins and their hinterlands, differentiating topographic stability, long-term pronounced subsidence, initial stability over a dynamic high followed by moderate subsidence and regions that are relatively proximal to subduction zones with varied dynamic topography histories. Along passive continental margins the most commonly observed process is a gradual motion from dynamic highs towards lows during the fragmentation of Pangea, reflecting the location of many passive margins now over slabs sinking in the lower mantle. Our best-fit model results in up to 500 (± 150) m of total dynamic subsidence of continental interiors while along passive margins the maximum predicted dynamic topographic change over 140 million years is about 350 (± 150) m of subsidence. Models with plumes exhibit clusters of transient passive margin uplift of about 200 ± 200 m, but are mainly characterised by long-term subsidence of up to 400 m. The good overall match between predicted dynamic topography to geologically mapped paleo-coastlines makes a convincing case that mantle-driven topographic change is a critical component of relative sea level change, and indeed the main driving force for generating the observed geometries and timings of large-scale continental inundation through time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...