ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • Debunscha Maar magmas mixed and fractional crystallised at upper mantle depths • Its main magma source is peridotite with a minor pyroxenite component • Amphibole signal and high olivine Ca/Al indicate a metasomatised peridotite mantle • Mantle potential temperatures give no sign of an anomalous hot mantle Abstract Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77–87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9–11.7 wt.%), and are generally more primitive than the matrix glasses (MgO 5.0–5.5 wt.%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Highlights • Data set of Br and Cl emissions from 29 large CAVA eruptions (VEI 〉 5). • Melt inclusions are strongly enriched in chlorine and bromine compared to their respective matrix glasses. • Fluid partitioning is 4 to 68 times more efficient for Br than for Cl. • Subducted calcareous sediments are the major control on the arc-magmatic bromine contents. • Average CAVA eruption would add 368% EESC of recent annual loading to stratosphere. Abstract Large explosive volcanic eruptions inject gases, aerosols, and fine ashes into the stratosphere, potentially influencing climate and atmosphere composition on a global scale. Although the potential climate effect of chlorine (Cl) and bromine (Br) injections into the stratosphere is known, the global mass fluxes are poorly constrained. In this study we focus on the magmatic degassing systematics and budgets of Br and Cl, and on constraining the major sources of Br in a subduction setting. We therefore present a regional time series of Br and Cl emissions from 29 highly explosive eruptions throughout the Central American Volcanic Arc (CAVA), covering the last 200 ka, and a range of magmatic compositions and eruption magnitudes. We have measured Br and Cl in matrix glasses and melt inclusions using synchrotron radiation micro X-ray fluorescence spectrometry (SR micro-XRF) and electron microprobe, respectively. Melt inclusions of the CAVA tephras generally have higher Br (0.9 to 17.9 ppm) and Cl (770 to 3800 ppm) contents than the matrix glasses (0.39 to 1.5 ppm Br, 600 to 2800 ppm Cl). Moreover, the difference between maximum and minimum concentrations observed in melt inclusions of a given sample ranges between 9 and 90% of the maximum observed concentration for Br, and between 2 and 40% for Cl. Such intra-sample variations arise from variable pre-eruptive degassing of these halogens into a magmatic fluid phase. The relative loss of Br from the melt is 4 to 68 times higher than that of Cl. The masses of Br (2–1100 kt) and Cl (0.1 to 800 Mt) emitted by the eruptions generate instantaneous additions to the stratosphere potentially amounting to ∼6–5600% of the present-day stratospheric annual global loading of Equivalent Effective Stratospheric Chlorine. As the size of the stratospheric impact is primarily a function of eruption magnitude, we use magnitude-frequency relationships to estimate that eruptions adding ∼10% to resident EESC loading would occur every 〈40 years while every ∼200 years an eruption would double the EESC loading. Comparing the variations in Br and Cl concentrations and particularly minimum Cl/Br ratios in melt inclusions with geochemical trace-element proxies (e.g. U/La, Ba/Th) and lead-isotope compositions, which change along the arc in response to changing subduction conditions, we suggest that subducted calcareous sediment is a major source of magmatic Br but also infer an important role of fluids expelled from serpentinized subducted mantle. Extrapolation of CAVA volcanic Br emissions to the global subduction system thus needs to consider variations in the nature of subducted lithologies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-11
    Description: Remotely Operated Vehicles (ROVs) have proven to be highly effective in recovering well localized samples and observations from the seafloor. In the course of ROV deployments, however, huge amounts of video and photographic data are gathered which present tremendous potential for data mining. We present a new workflow based on industrial software to derive fundamental field geology information such as quantitative stratigraphy and tectonic structures from ROV-based photo and video material. We demonstrate proof of principle tests for this workflow on video data collected during dives with the ROV Kiel6000 on a new hot spot volcanic field that was recently identified southwest of the island of Santo Antão in the Cape Verdes. Our workflow allows us to derive three-dimensional models of outcrops facilitating quantitative measurements of joint orientation, bedding structure, grain size comparison and photo mosaicking within a georeferenced framework. The compiled data facilitate volcanological and tectonic interpretations from hand specimen to outcrop scales based on the quantified optical data. The demonstrated procedure is readily replicable and opens up possibilities for post-cruise “virtual fieldwork” on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-15
    Description: Fogo is one of the most active oceanic volcanoes in the world. The island was affected by a prehistoric giant lateral collapse that decapitated the summit of the former Monte Amarelo volcano. Subsequent volcanism has partly filled the collapse scar and built up the present-day Cha das Caldeiras plain and the Pico do Fogo stratovolcano. We have conducted a thermobarometric study of historic and prehistoric, basanitic to tephritic rocks in order to gain insight into Fogo's magma plumbing system and the impact of the collapse event on fractionation depths. A main focus was the penultimate 1951 eruption, which produced basanites to tephrites (5.0–8.2 wt.% MgO) at two sites south and northwest of Pico do Fogo. Clinopyroxene–melt barometry of phenocrysts yields a well-confined pressure range of 480–650 MPa for the final crystallization level. Microthermometric data of CO2-dominated fluid inclusions in olivine and clinopyroxene phenocrysts yield systematically lower pressures of 250–430 MPa. Inclusions in cumulate xenoliths yield pressures of 100–290 MPa. The combined data indicate pre-eruptive magma storage in the uppermost mantle between 17 and 22 km depth and syn-eruptive short-term magma stalling within the lower crust at 8–13 km depth. The lower pressures revealed by fluid inclusions in xenoliths may indicate that they originate from pre- 1951 magma pulses that stalled and crystallized at variable levels in the crust. There is, however, no petrologic evidence for persistent crustal magma chambers. Clinopyroxene–melt barometric data of other historic and prehistoric eruptions indicate that magma storage and differentiation occurred in the uppermost mantle at pressures between 420 and 870 MPa (15–30 km depth) throughout the subaerial evolution of Fogo. Our data indicate that fractionation depths decreased significantly during a period of about 100 ka representing a strong growth phase of Fogo edifice leading up to the giant Monte Amarelo flank collapse at 123–62 ka. This trend seems to have been interrupted by the flank collapse, as early post-collapse magmas stagnated at deeper levels than late pre-collapse ones. Historic eruptions show shallower and broader pressure ranges, indicating an increase in complexity of the magma storage systems. Thus petrologic data indicate that flank collapse events may significantly influence deep-seated magma plumbing systems beneath ocean islands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Highlights • Individual evolution of temporal and spatial co-existing magma suites • Determination of pre-eruptive magma chamber conditions of the Cão Grande Formation magma chambers • Cão Grande Formation phonolite magmas typically reach H2O-saturation prior to the eruption. Abstract The Cão Grande Formation (CGF) on the western plateau of Santo Antão is a sequence of four phonolitic tephras (Canudo Tephra, Cão Grande I Tephra, Cão Grande II Tephra and Furninha Tephra) produced by highly explosive eruptions that alternatingly originated from a basanitic - phonolitic and a nephelinitic - phonolitic magmatic system. Detailed stratigraphy and petrological investigations of each unit are used to demonstrate the unusual situation that two distinct highly evolved magmas differentiated contemporaneously in separate magmatic systems. Chemical thermobarometry suggests that both magmatic systems not only temporally co-existed, but also that their magma chambers resided close to each other at 7 to 16 km depth, beneath the western plateau of Santo Antão. However, the distinct melt and magma compositions indicate that both systems evolved independently. The only interaction between both magmatic systems was an injection of magma from the nephelinitic - phonolitic magmatic system into the Cão Grande II Tephra (CG II) phonolitic reservoir, which is associated to the basanitic - phonolitic magmatic system. Compositional zonations in the tephra deposits indicate that the eruptions of the CGF tapped stratified magma reservoirs that mainly resulted from crystal accumulation generating downward increasing magma density. However, the CG II tephras also show a significant gradient in melt (glass) compositions. Magmas of the Canudo Tephra (CT) and the Cão Grande I Tephra (CG I) were H2O-saturated and their eruptions were probably triggered by fluid overpressure in the magma chamber. On the other hand, the CG II magma was H2O-undersaturated; we therefore assume that the injection of the hot nephelinitic - phonolitic magma system-type melt/magma triggered the eruption. The zoned deposit of the Furninha Tephra (FT) indicates mafic magma replenishment into a phonolitic reservoir directly prior to the eruption, thus providing a probable triggering mechanism. The new magma chamber models and thermobarometric results for the four CGF units provide constraints for hazard assessments, because similar events may occur in the future considering the longevity of the CGF magma systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-07
    Description: Xenolith samples of marine terrigenous sediments and altered Jurassic MORB from Gran Canaria (Canary Islands) represent samples of sub-island oceanic crust. These samples are postulated to define end-members for crustal contamination of basaltic and felsic ocean island magmas. The meta-igneous rocks show great heterogeneity in oxygen isotope compositions (δ18O 3.3–8.6‰), broadly correlating with their stratigraphic position in the oceanic crust. Gabbros interpreted as fragments of oceanic crust layer 3 have δ18O values of 3.3–5.1‰, which is lower than MORB (5.7–6.0‰). Layer 2 lavas and dykes show a broader range of δ18O of 4.1–8.6‰. Therefore, high-temperature metamorphism seems to have been the dominant process in layer 3, while both high- and low-temperature alteration have variably affected layer 2 rocks. Siliciclastic sediments have high δ18O values (14.1–16.4‰), indicating diagenesis and low-temperature interaction with seawater. The oxygen isotope stratigraphy of the crust beneath Gran Canaria is typical for old oceanic crust and resembles that in ophiolites. The lithologic boundary between older oceanic crust and the igneous core complex at 8–10 km depth—as postulated from geophysical data—probably coincides with a main magma stagnation level. There, the Miocene shield phase magmas interacted with preexisting oceanic crust. We suggest that the range in δ18O values (5.2–6.8‰) [Chem. Geol. 135 (1997) 233] found for shield basalts on Gran Canaria, and those in some Miocene felsic units (6.0–8.5‰), are best explained by assimilation of various amounts and combinations of oceanic and island crustal rocks and do not necessarily reflect mantle source characteristics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-15
    Description: Gabbro and minor metabasalt fragments of MORB composition were found on three of the seven Canary Islands. On Gran Canaria, they occur as metamorphosed (greenschist facies) metabasalt and metagabbro clasts in Miocene fanglomerates and sandstones overlying the shield basalts. On Lanzarote and La Palma, MORB gabbros occur as xenoliths in Pleistocene and historic basanite scoria cones and lava flows. The MORB xenoliths are interpreted as fragments of layers 2 and 3 of the underlying Mesozoic oceanic crust, based on mineral compositions (An-rich plagioclase, Ti- and Al-poor clinopyroxene, ± orthopyroxene ± olivine), depleted major and trace element signatures, and Jurassic ages (ca. 180 Ma) determined on single primary plagioclase and secondary amphibole crystals using the 40Ar/39Ar laser technique. The Lanzarote gabbros are very mafic (mg# 87 to 89 in clinopyroxene), moderately deformed, and highly depleted. Gran Canaria gabbros are more evolved (mg# 69 to 83 in clinopyroxene) and texturally mostly isotropic. La Palma MORB gabbros have a range of compositions (mg# 68 to 83 in clinopyroxene), some rocks being strongly metasomatized by interaction with basanite magma. The occurrence of MORB fragments on Lanzarote provides definite evidence that oceanic crust beneath the Canary Island archipelago continues at least as far east as the eastern Canary Islands. We postulate that MORB gabbros on Lanzarote which are commonly associated with peridotite xenoliths, represent the base of oceanic layer 3 where gabbros and peridotites were possibly tectonically interleaved. Such tectonic mixing would explain the enigmatic seismic velocities in this area. Gabbro xenoliths from La Palma were derived from within layer 3, probably from wall rock close to magma reservoirs emplaced during the Pleistocene/Holocene growth of La Palma. The Gran Canaria xenoliths are interpreted to represent the metamorphosed layer 2 and upper layer 3. The abundance of lower crustal xenoliths emphasizes the importance of the lower crust and crust-mantle boundary zone as a major level of magma accumulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Highlights • Extensive set of 170 40Ar39Ar single-crystal ages for Cadamosto Seamount. • Volcanic eruption ages at Cadamosto Seamount are all young (〈 100 ka). • Three samples dominated by sanidine phenocrysts preserve a 21.04 ± 0.62 ka age. • Sanidine antecrysts in two samples show complex chemical zonation patterns. • Antecryst ages suggest long-lived magmatic activity in the seamount, up to 1.52 Ma. Abstract Cadamosto Seamount is located in the SW of the Cape Verde Archipelago in the central Atlantic Ocean off the west coast of Africa. Many radiometric dates exist for the islands in the archipelago; however, no geochronological information has been obtained from the numerous seamounts. The timescales for igneous processes in the submarine realm are thus poorly understood. In this study, we investigated five lavas that were sampled by dredging and ROV (remotely operated vehicle) from the flanks and summit areas of the largely phonolitic Cadamosto Seamount during two different research cruises. Chemical zonation patterns of minerals were determined by electron microprobe, and radiometric ages were obtained from single-crystal total-fusion and single−/multi-grain step-heating 40Ar39Ar analyses of sanidine, nepheline and sodalite-group minerals. Our 40Ar39Ar results reveal young sanidine eruption ages (all 〈100 ka) at Cadamosto Seamount: (1) Three western flank/summit lavas have a relatively simple petrology dominated by phenocrysts, and overlap with mean sanidine ages of 20.98 ± 0.87 ka, 21.44 ± 0.80 ka and 22.3 ± 2.0 ka, with a combined mean age of 21.04 ± 0.62 ka from the three samples (all uncertainties are quoted at 2σ). The remaining two samples from the summit/NE flank are dominated by complex zoned sanidines with resorbed antecrystic cores and phenocrystic rims. These samples yield older sanidine ages of 51.8 ± 2.4 ka and 97 ± 14 ka, which are interpreted to be maximum eruption ages. This is due to the dominance of antecrysts in these two samples and the possibility that the analyzed sanidine grains may be a mixture of older antecrystic cores and younger phenocrystic rims. The older 40Ar39Ar ages of many sanidine and nepheline antecrysts also give us clues regarding older magmatic events at Cadamosto Seamount, despite these grains having undergone resorption and phenocrystic rim overgrowths, resulting in some radiogenic 40Ar loss during entrainment in the subsequent magmas. The antecrysts minimum ages extend back to 1.5215 ± 0.0083 Ma, which supports the age progression of magmatism observed in the southern islands chain of the Cape Verde Archipelago. The youngest volcanic eruption period (21.14 ± 0.62 ka) occurred during the Last Glacial Maximum, a period of global sea level lowstands. We suggest that the comparatively rapid unloading leading up to the lowstand may have reduced pressure conditions within the Cadamosto Seamount magma plumbing system, and thus led to enhanced submarine eruption activity.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Highlights • Overview on geochemical composition of pore water and solid phase of sediments on the Azores Plateau. • Evidence for deep marine hydrothermal activity on the Azores Plateau. • Pore water data suggest ongoing anaerobic oxidation of methane and carbonate recrystallization. The Azores Plateau is an active magmatic region in the Central North Atlantic Ocean. In this study, we present a comprehensive data set of major element compositions and 87Sr/86Sr ratios of pore waters from surface sediments (0–9 mbsf) of the Azores Plateau. Based on distinct geochemical signatures we can separate normal marine from hydrothermally affected sediments. Normal marine sediments can further be differentiated by their ash content. Pore waters of ash rich gravity cores (GCs) do not show any deviations from seawater values except of a minor increase in Sr. In contrast, ash poor GCs generally show a trend for decreasing Ca with increasing depth, accompanied by a minor SO4 decrease and a more pronounced Sr increase. We suggest that these deviations are caused by processes such as anaerobic oxidation of methane and carbonate recrystallization. At four additional sample locations we observed a decrease in Mg and SO4 accompanied by a Ca increase in the pore waters, a pattern typical for hydrothermal fluids. The existence of hydrothermal systems in this region are corroborated by multi-channel seismic data, suggesting that sill or dyke intrusions are present in the subsurface close to the core locations. Overall, our observations offer preliminary indications for the existence of submarine hydrothermal systems on the Azores Plateau away from the Mid- Atlantic Ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Santorini Volcano, located in the central sector of the South Aegean volcanic arc, is one of the most active and potentially dangerous volcanoes in Europe. It has hosted Plinian eruptions over the last 350 ka of which at least four eruptions were accompanied by caldera collapses. Even though Santorini Volcano is considered a major threat, the main focus of research, thus far, has been on the comparatively young and subaerial deposits, whereas older stages of volcanism have been poorly studied. Our study focusses on samples from the submarine inner caldera walls and gives new insights into the early evolutionary stages of Santorini Volcano, contributing to a better understanding of its eruptive history and thus potential risks. The submarine lava successions were sampled along the inner caldera wall by a remotely operated vehicle (ROV) during R/V POSEIDON cruise 511 in 2017. The recovered lavas comprise two magmatic series, a low-K basaltic series overlain by a medium- to high-K series, which includes basaltic andesites, andesites and occasional dacites to trachytes. Major and trace element compositions and mineral zonation patterns suggest that fractional crystallisation and periodic magma replenishment were the dominant processes controlling magma evolution of both magmatic series. In addition, repeated magma mixing events played an important role, as indicated by zonation patterns in plagioclase and clinopyroxene ante- and phenocrysts. The thickness of the submarine lava successions (≥100 m) and the occurrence of similarly zoned plagioclase throughout, indicate long-lived magma plumbing systems characterised by repeated processes. Furthermore, the incompatible element and radiogenic isotope ratios indicate a heterogeneous mantle source for Santorini magmas, which reflects the relative contribution of subduction (sedimentary) input and mantle wedge influx. A lava sample from the northern submarine caldera wall probably represents a deep level of the original Peristeria volcano. 40Ar/39Ar dating of andesite lavas from the southern submarine caldera produced ages of ~255 ka, whereas one basalt lava produced an age of 309 ± 30 ka. Interestingly, the new ages of both groups fall within an age gap in the volcanic history of Santorini Volcano. Even though it was not possible to unequivocally correlate the sampled submarine lava series to known subaerial units, the major and trace element compositions, and Sr-Nd-Pb isotopic compositions of our intermediate lavas show a strong similarity to subaerial lavas of Peristeria volcano, the second oldest major stage of Santorini volcanism. Nevertheless, it seems more likely that we have sampled so far unknown stages of volcanism at Santorini Volcano.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...