ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • Seismic chimneys represent potential leakage pathways for CCS sites. • Simulations indicate that CO2 will not reach chimney structures at Sleipner. • Detailed palaeo fluid system reconstruction is crucial for CCS site selection. The integrity of the caprock of a storage formation is the most crucial parameter for the long-term performance of a geological CO2 storage site. The Sleipner area in the Southern Viking Graben hosts the first and longest operating industrial scale CO2 storage project, where CO2 is injected in a saline aquifer of the Utsira Formation. Time-lapse seismic monitoring shows neither that CO2 has left the Utsira Formation nor indications for fracturing of the caprock by the CO2 injection activity, which is in agreement with previous numerical simulations. However, large chimney structures as close as 7 km from the injection point indicate that the caprock has been breached in the geological past, which may raise questions about the integrity of the caprock above the Sleipner CO2 storage site. Here, we present seismically constrained numerical fluid flow simulations that evaluate the influence of chimney structures on the long-term performance of the CO2 storage operation at Sleipner. The simulation could reproduce the spreading of the Sleipner CO2 plume, which is controlled by the anisotropic permeability field of the Utsira Formation and the regional dip of the formation top. We have performed long-term plume evolution simulations, which show that the injected CO2 will not reach the existing chimney structures assuming a realistic injection duration of 30 years. Our simulations indicate that an unrealistically long injection period between 92 and 140 years would be required for the CO2 to reach the existing chimney structures. In this case, a comparably low chimney permeability of 10 mD may be sufficient to facilitate CO2 migration from the storage formation to the seafloor, once the CO2 has reached a chimney structure. However, the simulations indicate that it is very unlikely that the CO2 may migrate along existing chimney structures at Sleipner. Our results highlight that the reconstruction of palaeo fluid flow systems and the identification of focused fluid conduits should be considered in the assessment of CO2 storage sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-19
    Description: As a result of extensive hydrocarbon exploration, the North Sea hosts several thousand abandoned wells; many believed to be leaking methane. However, how much of this greenhouse gas is emitted into the water column and ultimately reaches the atmosphere is not known. Here, we investigate three abandoned wells at 81-93m water depth in the Norwegian sector of the North Sea, all of which show gas seepage into the bottom water. The isotopic signature of the emanating gas points towards a biogenic origin and hence to gas pockets in the sedimentary overburden above the gas reservoirs that the wells were drilled into. Video-analysis of the seeping gas bubbles and direct gas flow measurements resolved initial bubble sizes ranging between 3.2 and 7.4mm in diameter with a total seabed gas flow between 1 and 19 tons of CH4 per year per well. Estimated total annual seabed emissions from all three wells of ~24 tons are similar to the natural seepage rates at Tommeliten, suggesting that leaky abandoned wells represent a significant source of methane into North Sea bottom waters. However, the bubble-driven direct methane transport into the atmosphere was found to be negligible (〈2%) due to the small bubble sizes and the water depth at which they are released.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-08
    Description: During the current (1995–present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (〉3 m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995–recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60 m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-08
    Description: Landslides associated with flank collapse are volumetrically the most significant sediment transport process around volcanic islands. Around Montserrat, in the Lesser Antilles, individual landslide deposits have volumes (1 to 20 km3) that are up to two orders of magnitude larger than recent volcanic dome collapses (up to 0.2 km3). The largest landslide deposits were emplaced in at least two stages, initiated by the emplacement of volcanic debris avalanches which then triggered larger-scale failure of seafloor sediment, with deformation propagating progressively downslope for up to 30 km on gradients of 〈 1°. An unusually detailed seismic, side-scan sonar and bathymetric dataset shows that the largest landslide off Montserrat (forming Deposit 8) incorporated ~ 70 m of in-situ sediment stratigraphy, and comprises ~ 80% seafloor sediment by volume. Well-preserved internal bedding and a lack of shortening at the frontally-confined toe of the landslide, shows that sediment failure involved only limited downslope transport. We discuss a range of models for progressively-driven failure of in-situ bedded seafloor sediment. For Deposit 8 and for comparable deposits elsewhere in the Lesser Antilles, we suggest that failure was driven by an over-running surface load that generated excess pore pressures in a weak and deforming undrained package of underlying stratigraphy. A propagating basal shear rupture may have also enhanced the downslope extent of sediment failure. Extensive seafloor-sediment failure may commonly follow debris avalanche emplacement around volcanic islands if the avalanche is emplaced onto a fine-grained parallel-bedded substrate. The timing of landslides off Montserrat is clustered, and associated with the deposition of thick submarine pyroclastic fans. These episodes of enhanced marine volcaniclastic input are separated by relatively quiescent periods of several 100 ka, and correspond to periods of volcanic edifice maturity when destructive processes dominate over constructive processes. Highlights: ► Marine volcanic debris avalanche emplacement can lead to much larger sediment failure. ► Failure is progressive, through in situ-strata, and frontally non-emergent. ► Sediment failure propagates on very low gradients, dominating final deposit volume. ► Process involves undrained loading and/or shear rupture, and may be repeated widely. ► Landslide timing reflects timescales of volcanic edifice growth and destruction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: We present results from the first three-dimensional (3D) marine seismic dataset ever collected over volcanic landslide deposits, acquired offshore of the Soufrière Hills volcano on the island of Montserrat in the Lesser Antilles. The 3D data enable detailed analysis of various features in and around these mass wasting deposits, such as surface deformation fabrics, the distribution and size of transported blocks, change of emplacement direction and erosion into seafloor strata. Deformational features preserved on the surface of the most recent debris avalanche deposit (Deposit 1) reveal evidence for spatially-variant deceleration as the mass failure came to rest on the seafloor. Block distributions suggest that the failure spread out very rapidly, with no tendency to develop longitudinal ridges. An older volcanic flank collapse deposit (Deposit 2) appears to be intrinsically related to large-scale secondary failure of seafloor sediments. We observe pronounced erosion directly down-slope of a prominent headwall, where translational sliding of well-stratified sediments was initiated. Deep-reaching faults controlled the form and location of the headwall, and stratigraphic relationships suggest that sliding was concurrent with volcanic flank collapse emplacement. We also identified a very different mass wasting unit between Deposit 1 and Deposit 2 that was likely emplaced as a series of particle-laden mass flows derived from pyroclastic flows, much like the recent (since 1995) phase of deposition offshore Montserrat but at a much larger scale. This study highlights the power of 3D seismic data in understanding landslide emplacement processes offshore of volcanic islands. Highlights: ► 3D seismic data show new detail of volcanic landslide deposits offshore Montserrat. ► Volcanic flank collapse material has been diverted around seafloor topographic highs. ► This bending during emplacement has caused pronounced erosion into seafloor strata. ► Erosion can destabilize seafloor slopes, which then fail as translational slides. ► Block distributions and surface deformation give insight into debris avalanche style.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, 2 pp.
    Publication Date: 2019-10-14
    Description: 7.10.2019 - 13.10.2019
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, 2 pp.
    Publication Date: 2019-10-21
    Description: 14.10.2019 - 20.10.2019
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, 2 pp.
    Publication Date: 2019-10-28
    Description: 21.10.2019 - 27.10.2019
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    In:  GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 13 pp.
    Publication Date: 2020-04-20
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-04-23
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...