ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1985-1989  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-12
    Description: Geophysical data are used to investigate the origin of the Northern Somali Basin and its relationship to surrounding tectonic elements. The results show the Northern Somali Basin to be the third of a series of oceanic basins separated by long transform faults created during movement between East and West Gondwanaland. The flexure resulting from differential subsidence across Chain Ridge along with the difference in lithospheric thermal structure on either side of it can account for the amplitude and shape of the observed geoid step and gravity anomalies across Chain Rige. It is suggested that the geoid and gravity low over the Northern Somali Basin may result from the superposition of a continental edge effect anomaly and the fracture zone edge effect anomaly.
    Keywords: GEOPHYSICS
    Type: AD-A205842 , Journal of Geophysical Research (ISSN 0148-0227); 93; 11985-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Blackwell
    In:  Geophysical Journal of the Royal Astronomical Society, 87 (2). pp. 421-454.
    Publication Date: 2020-07-30
    Description: The nature of subsidence near the ridge crest of the intermediate and fast spreading mid-ocean ridges of the Indian and Pacific Oceans is investigated using surface-ship bathymetry and magnetics profiles. The ridge can be divided into discrete sections, apparently bounded by distinct structural features such as major fracture zones, in which bathymetry plotted against crustal age forms a well-defined envelope with a width roughly the amplitude of the local bathymetry. The averaged bathymetry in all of the regions studied follows closely a square root of age subsidence curve which in most regions has a subsidence coefficient, C1, in the range of 340–390 m Myr−1/2. The best fitting subsidence curve, however, never reproduces the amplitude of the axial topographic high. The most notable region displaying unusual behaviour is the East Pacific Rise between 9°S and 22°S. In this region, the western flank of the ridge is subsiding at 200–225 m Myr−1/2 while the eastern flank is subsiding at ‘normal’ rates of 350–400 m Myr−1/2. Other anomalous areas include the region between the Easter Island hot spot and the Chile Rise triple junction in which the ridge crest is shallow and which is subsiding at rates of about 290 m Myr−1/2, and the region east of the Australia-Antarctic Discordance in which the northern flank is subsiding at 440 m Myr−1/2. This area may also be subsiding asymmetrically although there is not much data from the southern flank. The asymmetric subsidence in the 9°S-22°S region of the East Pacific Rise begins immediately at the ridge crest and the low subsidence rates on the west flank continue to at least 12 Myr old crust. Oligocene-aged crust on the western flank is subsiding at more normal rates, but is 500 m shallow with respect both to the world-wide average and to the conjugate crust on the eastern flank. The simplest model to explain these observations is that the western flank is underlain by a hotter mantle, perhaps as the result of upwelling resulting from the large-scale return circulation from the trenches. Depending on the depth of compensation, the observed asymmetry could result from a lateral temperature gradient of 0.05–0.10°C km−1 and a total lateral temperature variation of under 100°C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...