ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • 1995-1999  (7)
Collection
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.
    Keywords: Life Sciences (General)
    Type: Journal of plant research (ISSN 0918-9440); Volume 112; 1108; 493-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 +/- 50 microns back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 +/- 137 microns. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is 〈 or = 30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 +/- 30 microns from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.
    Keywords: Life Sciences (General)
    Type: Planta (ISSN 0032-0935); Volume 206; 4; 598-603
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); Volume 118; 4; 1139-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The authors propose using the term "distal elongation zone" (DEZ) rather than "postmitotic isodiametric growth zone" to refer to the group of cells between the apical meristem and the elongation zone in plant roots. Reasons presented for the change are that the proposed DEZ includes many cells that are still dividing, most cells in the region are not isodiametric, and the pattern of cell expansion in this region varies with position in the region. Cells in the DEZ respond to gravistimulation, mechanical impedance, electrotropic stimulation, water stress, and auxin. Differences in gene expression patterns between DEZ cells and cells in the main elongation zone are noted.
    Keywords: Life Sciences (General)
    Type: Plant physiology (ISSN 0032-0889); Volume 109; 725-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.
    Keywords: Life Sciences (General)
    Type: Plant, cell & environment (ISSN 0140-7791); 20; 7; 919-28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-16
    Description: A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations.
    Keywords: Life Sciences (General)
    Type: Planta (ISSN 0032-0935); 203; Suppl 1; S115-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-15
    Description: Two key issues in studies of the nature of the gravitropic response in roots have been the determination of the precise pattern of differential elongation responsible for downward bending and the identification of the cells that show the initial motor response. The main approach for examining patterns of differential growth during root gravitropic curvature has been to apply markers to the root surface and photograph the root at regular intervals during gravitropic curvature. Although these studies have provided valuable information on the characteristics of the gravitropic motor response in roots, their labor intensive nature limits sample size and discourages both high frequency of sampling and depth of analysis of surface expansion data. In this brief review we describe the development of computer-based video analysis systems for automated measurement of root growth and shape change and discuss some key features of the root gravitropic response that have been revealed using this methodology. We summarize the capabilities of several new pieces of software designed to measure growth and shape changes in graviresponding roots and describe recent progress in developing analysis systems for studying the small, but experimentally popular, primary roots of Arabidopsis. A key finding revealed by such studies is that the initial gravitropic response of roots of maize and Arabidopsis occurs in the distal elongation zone (DEZ) near the root apical meristem, not in the main elongation zone. Another finding is that the initiation of rapid elongation in the DEZ following gravistimulation appears to be related to rapid membrane potential changes in this region of the root. These observations have provided the incentive for ongoing studies examining possible links between potential growth modifying factors (auxin, calcium, protons) and gravistimulated changes in membrane potential and growth patterns in the DEZ.
    Keywords: Life Sciences (General)
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); 10; 2; 65-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...