ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
  • 2000-2004  (20)
  • 1
    Publication Date: 2004-12-03
    Description: Existing measurements and modeling studies indicate that the climate and general circulation of the thin, predominately CO2 Martian atmosphere are characterized by large-amplitude variations with a wide range of spatial and temporal scales. Remote sensing observations from Earth-based telescopes and the Mariner 9, Viking, Phobos, and Mars Global Surveyor (MGS) orbiters show that the prevailing climate includes large-scale seasonal variations in surface and atmospheric temperatures (140 to 300 K), dust optical depth (0.15 to 1), and water vapor (10 to 100 precipitable microns). These observations also provided the first evidence for episodic regional and global dust storms that produce even larger perturbations in the atmospheric thermal structure and general circulation. In-situ measurements by the Viking and Mars Pathfinder Landers reinforced these conclusions, documenting changes in the atmospheric pressure on diurnal (5%) and seasonal (〉20%) time scales, as well as large diurnal variations in the near-surface temperature (40 to 70 K), wind velocity (0 to 35 m/s), and dust optical depth (0.3 to 6). These in-situ measurements also reveal phenomena with temporal and spatial scales that cannot be resolved from orbit, including rapid changes in near-surface temperatures (+/- 10 K in 10 seconds), large near-surface vertical temperature gradients (+/- 15 K/meter), diurnally-varying slope winds, and dust devils . Modeling studies indicate that these changes are forced primarily by diurnal and seasonal variations in solar insolation, but they also include contributions from atmospheric thermal tides, baroclinic waves (fronts), Kelvin waves, slope winds, and monsoonal flows from the polar caps.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 84; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-30
    Description: The addition of a comprehensive wave investigation to the Jupiter Icy Moons Orbiter (JIMO) science payload will provide a broad range of information on the icy moons of Jupiter including the detection of subsurface liquid oceans; mapping of their ionospheres; their interaction with the magnetospheric environment; and on the Jovian magnetosphere. These measurements are obtained through the use of both passive and active (sounding) means over broad frequency ranges. The frequency range of interest extends from less than 1 Hz to 40 MHz for passive measurements, from approximately 1 kHz to a few MHz for magnetospheric and ionospheric sounding, and between 1 and approximately 10 MHz for subsurface radar sounding. An instrument to detect subsurface radar sounding, magnetospheric interactions, and ionospheric sounding is discussed.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 42; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-23
    Description: The detection of impulsive low-frequency (10 to 80 kHz) radio signals, and separate very-low-frequency (approx. 100 Hz) radio 'whistler' signals provided the first evidence for lightning in the atmosphere of Venus. Later, a small number of impulsive high- frequency (100 kHz to 5.6 MHz) radio signals, possibly due to lightning, were also detected. The existence of lightning at Venus has, however, remained controversial. Here we report the results of a search for high-frequency (0.125 to 16 MHz) radio signals during two close fly-bys of Venus by the Cassini spacecraft. Such signals are characteristic of terrestrial lightning, and are commonly heard on AM (amplitude-modulated) radios during thunderstorms. Although the instrument easily detected signals from terrestrial lightning during a later fly-by of Earth (at a global flash rate estimated to be 70/s, which is consistent with the rate expected for terrestrial lightning), no similar signals were detected from Venus. If lightning exists in the venusian atmosphere, it is either extremely rare, or very different from terrestrial lightning.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature; Volume 409; 313-315
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-23
    Description: Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature: Letters to Nature; Volume 415; 991-994
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-23
    Description: Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Letters to Nature; Volume 415; 985-987
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Description: Aggregates were observed to form very suddenly in a lab-contained dust cloud, transforming (within seconds) an opaque monodispersed cloud into a clear volume containing rapidly-settling, long hair-like aggregates. The implications of such a "phase change" led to a series of experiments progressing from the lab, to KC-135, followed by micro-g flights on USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden "collapse" of a cloud to the effect of dipoles. This has significant ramifications for all types of cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of granular matter. Notably, there is the inference that like-charged grains need not necessarily repel if they are close enough together: attraction or repulsion depends on intergranular distance (the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of mixed charges on individual grains resulting from tribological processes --are not universally recognized in electrostatics, granular material studies, and aerosol science, despite some early seminal work in the literature, and despite commercial applications of dipoles in such modern uses as "Krazy Glue", housecleaning dust cloths, and photocopying. The overarching goal of EGM is to empirically prove that (triboelectrically) charged dielectric grains of material have dipole moments that provide an "always attractive" intergranular force as a result of both positive and negative charges residing on the surfaces of individual grains. Microgravity is required for this experiment because sand grains can be suspended as a cloud for protracted periods, the grains are free to rotate to express their electrostatic character, and Coulombic forces are unmasked. Suspended grains will be "interrogated" by applied electrical fields. In one module, grains will be immersed in an inhomogeneous electric field and allowed to be attracted towards or repelled from the central electrode of the module: part of the grain's speed will be a function of its net charge (monopole), part will be a function of the dipole. Observed grain position vs. time will provide a curve that can be deconvolved into the dipole and monopole forces responsible, since both have distinctive radial dependencies. In a second approach, the inhomogeneous field will be alternated at low frequency (e.g., every 5-10 seconds) so that the grains are alternately attracted and repelled from the center of the field. The resulting "zigzag" grain motion will gradually drift inwards, then suddenly change to a unidirectional inward path when a critical radial distance is encountered (a sort of "Coulombic event horizon") at which the dipole strength supersedes the monopole strength --thus proving the presence of a dipole, while also quantifying the D/M ratio. In a second module, an homogeneous electric field eliminates dipole effects (both Coulombic and induced) to provide calibration of the monopole and to more readily evaluate net charge statistical variance. In both modules, the e-fields will be exponentially step-ramped in voltage during the experiment, so that the field "nominalizes" grain speed while spreading the response time --effectively forcing each grain to "wait its turn" to be measured. In addition to rigorously quantifying M, D, and the D/M ratio for many hundreds of grains, the experiment will also observe gross electrometric and RF discharge phenomena associated with grain activity. The parameter space will encompass grain charging levels (via intentional triboelectrification), grain size, cloud density, and material type. Results will prove or disprove the dipole hypothesis. In either case, light will be shed on the role of electrostatic forces in governing granular systems. Knowledge so gained can be applied to natural clouds such as protostellar and protoplanetary dust and debris systems, planetary rings, planetary dust palls and aerosols created by volcanic, impact, aeolian, firestorm, or nuclear winter processes. The data are also directly applicable to adhesion, cohesion, transport, dispersion, and collection of granular materials in industrial, agricultural, pharmaceutical applications, and in fields as diverse as dust contamination of space suits on Mars and crop spraying on Earth.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 670-687
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-02
    Description: Ground-penetrating radar (GPR) offers the exciting possibility of remote sensing below the Martian surface for trapped aquifers. A GPR is currently heading to Mars onboard Mars Express (MEX) and a GPR is in consideration to be onboard Mars Reconnaissance Orbiter (MRO) in 2005. While such orbital systems offer great potential for polar stratigraphy studies, their ability to penetrate deep into the Martian polar ice is a function of both the intervening ionospheric density and the overlying ground ice conductivity. The influence of both signal-altering layers will be discussed. Polar Ice and Water: Clifford1,2 has suggested
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-02
    Description: We estimate the strength of the "fairweather" electric fields formed in the surface/ionosphere capacitor system via charged dust storms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-02
    Description: Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this region. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.
    Keywords: Exobiology
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...