ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • 2005-2009  (4)
Collection
Year
  • 1
    Publication Date: 2017-06-28
    Description: Methane (CH4) concentration and stable isotope (δ2H-CH4 and δ13C-CH4) depth distributions show large differences in the water columns of the Earth's largest CH4-containing anoxic basins, the Black Sea and Cariaco Basin. In the deep basins, the between-basin stable isotope differences are large, 83‰ for δ2H-CH4 and 9‰ for δ13C-CH4, and the distributions are mirror images of one another. The major sink in both basins, anaerobic oxidation of CH4, results in such extensive isotope fractionation that little direct information can be obtained regarding sources. Recent measurements of natural 14C-CH4 show that the CH4 geochemistry in both basins is dominated (∼64 to 98%) by inputs of fossil (radiocarbon-free) CH4 from seafloor seeps. We derive open-system kinetic isotope effect equations and use a one-dimensional (vertical) stable isotope box model that, along with isotope budgets developed using radiocarbon, permits a quantitative treatment of the stable isotope differences. We show that two main factors control the CH4 concentration and stable isotope differences: (1) the depth distributions of the input of CH4 from seafloor seeps and (2) anaerobic oxidation of CH4 under open-system steady state conditions in the Black Sea and open-system non-steady-state conditions in the Cariaco Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-28
    Description: Numerous methane-emitting bottom features, such as seeps, methane clathrate hydrates (clathrates), and mud volcanoes, have been identified recently in the Black Sea. The fluxes of methane from these sources averaged over large spatial scales are unknown. Here we take advantage of the fact that the Black Sea is a semi-enclosed basin with restricted deep water circulation to establish first-order estimates of basin-wide fluxes of methane from these sources to the water column and atmosphere. First, we measured the natural radiocarbon content of methane (14C–CH4) dissolved in the water column and emitted from seeps. The 14C–CH4 results showed that the dominant source of methane to the water column is emitted from seeps and a smaller source is diagenetically produced in relatively modern sediments. The 14C–CH4 results were then used to partition a basin-wide total methane budget; this analysis estimated the basin-wide flux of methane from seeps and clathrates to the water column to be 3.60 to 4.28 Tg yr− 1. Second, a geochemical box model was used to calculate possible distributions of methane inputs from seeps and clathrates as well as provide additional estimates of the basin-wide flux of methane from seeps and clathrates to the water column (4.95 to 5.65 Tg yr− 1).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Niño–related processes and on development of tropical ocean models capable of simulating and predicting El Niño. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Niño and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Niño and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Niño. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Niño and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...