ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • 2005-2009  (12)
Collection
Years
Year
  • 1
    Publication Date: 2018-06-06
    Description: The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (~25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or ~50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: It has been well documented that pollution aerosol and dust from East Asia can transport across the North Pacific basin, reaching North America and beyond. Such intercontinental transport extends the impact of aerosols for climate change, air quality, atmospheric chemistry, and ocean biology from local and regional scales to hemispheric and global scales. Long term, measurement-based studies are necessary to adequately assess the implications of these wider impacts. A satellite-based assessment can augment intensive field campaigns by expanding temporal and spatial scales and also serve as constraints for model simulations. Satellite imagers have been providing a wealth of evidence for the intercontinental transport of aerosols for more than two decades. Quantitative assessments, however, became feasible only recently as a result of the much improved measurement accuracy and enhanced new capabilities of satellite sensors. In this study, we generated a 4-year (2002 to 2005) climatology of optical depth for pollution aerosol (defined as a mixture of aerosols from urbanlindustrial pollution and biomass burning in this study) over the North Pacific from MODerate resolution Imaging Spectro-radiometer (MODIS) observations of fine- and coarse-mode aerosol optical depths. The pollution aerosol mass loading and fluxes were then calculated using measurements of the dependence of aerosol mass extinction efficiency on relative humidity and of aerosol vertical distributions from field campaigns and available satellite observations in the region. We estimated that about 18 Tg/year pollution aerosol is exported from East Asia to the northwestern Pacific Ocean, of which about 25% reaches the west coast of North America. The pollution fluxes are largest in spring and smallest in summer. For the period we have examined the strongest export and import of pollution particulates occurred in 2003, due largely to record intense Eurasia wildfires in spring and summer. The overall uncertainty of pollution fluxes is estimated at about 80%. A reduction of uncertainty can be achieved with a better characterization of pollution aerosol through integrating emerging A-Train measurements. Simulations by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and Global Modeling Initiative (GMI) models agree quite well with the satellite-based estimates of annual and latitudeintegrated fluxes, with larger model-satellite differences in latitudinal variations of fluxes.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: We present a global model study of multi-decadal changes of atmospheric aerosols and their climate effects using a global chemistry transport model along with the near-term to longterm data records. We focus on a 27-year time period of satellite era from 1980 to 2006, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which involves a time-varying, comprehensive global emission dataset that we put together in our previous investigations and will be improved/extended in this project. This global emission dataset includes emissions of aerosols and their precursors from fuel combustion, biomass burning, volcanic eruptions, and other sources from 1980 to the present. Using the model and satellite data, we will analyze (1) the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions from anthropogenic and natural sources, (2) the intercontinental source-receptor relationships controlled by emission, transport pathway, and climate variability.
    Keywords: Meteorology and Climatology
    Type: 7th Aerosol Comparisons between Observations and Models (AEROCOM) workshop; Oct 07, 2008 - Oct 11, 2008; Reykjavik; Iceland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthropogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ASTR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.
    Keywords: Meteorology and Climatology
    Type: From Deserts to Monsoons: Aerosols and Their Impacts at Regional and Global Scales; May 30, 2008 - Jun 06, 2008; Crete; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?
    Keywords: Environment Pollution
    Type: International Workshop on Global Dimming/Brightening; Feb 10, 2008 - Feb 24, 2008; Tel Aviv; Israel
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: We will show the GOCART model simulated vertical profiles of aerosol extinction, composition, and the extinction-to-backscatter ratios (lidar ratio) at different geographical regions during 2006. These results will be compared with the air-borne HSRL lidar and CALIPSO data.
    Keywords: Communications and Radar
    Type: Calipso Science Team Meeting; Mar 09, 2008 - Mar 14, 2008; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Western Africa is one of the most important aerosol source regions in the world. Major aerosol sources include dust from the world's largest desert Sahara, biomass burning from the Sahel, pollution aerosols from local sources and long-range transport from Europe, and biogenic sources from vegetation. Because these sources have large seasonal variations, the aerosol composition over the western Africa changes significantly with time. These aerosols exert large influences on local air quality and regional climate. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to analyze satellite lidar data from the GLAS instrument on the ICESat and the sunphotometer data from the ground-based network AERONET taken in both the wet (September - October 2003) and dry (February - March 2004) seasons over western Africa. We will quantify the seasonal variations of aerosol sources and compositions and aerosol spatial (horizontal and vertical) distributions over western Africa. We will also assess the climate impact of western African aerosols. Such studies will be applied to support the international project, Africa Monsoon Multidisciplinary Analysis (AMMA) and to analyze the AMMA data.
    Keywords: Meteorology and Climatology
    Type: Joint CACGP/IGAC/WMO Symposium: Atmospheric Chemistry at the Interfaces 2006; Sep 09, 2006 - Sep 24, 2006; Cape Town; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.
    Keywords: Environment Pollution
    Type: ASIA Oceania Geosciences Society (AOGS) 4th Annual Meeting; Jul 30, 2007 - Aug 04, 2007; Bangkok; Thailand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...