ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 2010-2014  (5)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-19
    Description: Observations are presented of emission lines from organic molecules at frequencies 30-100 GHz in the vicinity of the extremely young, chemically rich, very low-luminosity protostar and candidate first hydrostatic core Chamaeleon MMS1. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon-chains and methanol. Emission from the carbon-chain-bearing species peaks very near to the protostar; methanol peaks about 0.1 pc further away. The mean molecular hydrogen number density is calculated to be 10(exp 6) per cc. and the gas kinetic temperature is in the range 4-7 K. The abundances of long carbon chains (including C6H and HC7N) are very large -- similar to those found in the most carbon-chain-rich regions of the Galaxy, and indicative of a non-equilibrium carbon chemistry. The observed methanol and acetaldehyde abundances indicate active grain-surface chemistry and desorption processes. The carbon-chain anions C4H- and C6H- were not detected and the upper limit on the anion-to-neutral ratio for C4H- is less than 0.02% and for C6H-, less than 10%. These values are consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC3N and c-C3H2 were detected, with fractionation ratios of about 4%, and 22%, respectively. A low c-C3H2 ortho-to-para ratio was measured, which is consistent with a molecular hydrogen ortho-to-para ratio of close to zero and implies a relatively young chemical age (less than about 10(exp 5) yr) for the matter surrounding Cha-MMS1. These observations show that a high level of chemical complexity can be present in star-forming gas.
    Keywords: Astrophysics
    Type: GSFC.ABS.4791.2011 , Gordon Research Conference; Jul 17, 2011 - Jul 22, 2011; South Hadley, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.
    Keywords: Launch Vehicles and Launch Operations
    Type: M11-0614 , JANNAF 8th Modeling and Simulaiton Subcommittee Meeting; Dec 05, 2011 - Dec 09, 2011; Huntsville, AL; United States|JANNAF 5th Spacecraft Propulsion Subcommittee Meeting; Dec 05, 2011 - Dec 09, 2011; Huntsville, AL; United States|JANNAF 6th Liquid Propulsion Subcommittee Meeting; Dec 05, 2011 - Dec 09, 2011; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Systems Analysis and Operations Research
    Type: SpaceOps 2014 International Conference on Space Operations; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Model-Based System Engineering (MBSE) is an increasingly popular methodology for designing complex engineering systems. As the use of MBSE has grown, it has begun to be applied to systems that are less hardware-based and more people- and process-based. We describe our approach to incorporating MBSE as a way to streamline development, and how to build a model consisting of core resources, such as requirements and interfaces, that can be adapted and used by new and upcoming projects. By comparing traditional Mission Operations System (MOS) system engineering with an MOS designed via a model, we will demonstrate the benefits to be obtained by incorporating MBSE in system engineering design processes.
    Keywords: Systems Analysis and Operations Research
    Type: International Conference on Space Operations (SpaceOps 2014); May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] 〈 0.02% and [C6H(-l)]/[C6H] 〈 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.
    Keywords: Astrophysics
    Type: GSFC.JA.6406.2012 , Astrophysical Journal; 744; 131
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...