ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (8)
  • 2015-2019  (8)
Collection
Years
Year
  • 1
    Publication Date: 2018-01-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M ~ 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-29
    Description: We use seismic oceanography to document and analyze oceanic thermohaline finestructure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in-situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline finestructure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface meso-scale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse towards the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double-diffusion prevail. Synopsis We studied the internal temperature and salinity structure of the Tyrrhenian Sea (Mediterranean) using the multichannel seismic reflection method (the same used in the hydrocarbon industry). Low frequency sound (seismic) waves are produced at the surface with an explosive air source and recorded by a towed cable containing hydrophones (underwater microphones). The data are processed to reveal 'stratigraphy' that result from contrasts in density that are themselves caused by changes in temperature and salinity. In this way we can map ocean circulation in two-dimensions. We also deployed in situ oceanographic probes to measure temperature and salinity in order to corroborate and optimize the processing of the seismic data. We then quantified the internal gravity wave field by tracking the peaks of seismic trace wavelets. Our results show that the interior of the Tyrrhenian Sea is largely isolated from internal waves that are generated by a large cyclonic boundary current that contains waters from the Atlantic ocean and other parts of the Mediterranean. This isolation allows the thermohaline finestructure to form, where small scale vertical mixing processes are at play. Understanding these mixing processes will aid researchers study global ocean circulation and to add constraints that can help improve climate models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-02
    Description: The Western Mediterranean region is represented by a system of backarc basins associated to slab rollback and retreat of subduction fronts. The onset of formation of these basins took place in the Oligocene with the opening of the Valencia Through, the Liguro-Provençal and the Algero-Balearic basins, and subsequently, by the formation of the Alboran and Tyrrhenian basins during the early Tortonian. The opening of these basins involved rifting that in some regions evolved until continental break up, that is the case of the Liguro-Provençal, Algero-Balearic, and Tyrrhenian basins. Previous geophysical works in the first two basins revealed a rifted continental crust that transitions to oceanic crust along a region where the basement nature is not clearly defined. In contrast, in the Tyrrhenian Basin, recent analysis of new geophysical and geological data shows a rifted continental crust that transitions along a magmatic-type crust to a region where the mantle is exhumed and locally intruded by basalts. This basement configuration is at odds with current knowledge of rift systems and implies rapid variations of strain and magma production.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-02
    Description: In this work we present first results of two wide-angle seismic transects acquired in the Southern Tyrrhenian basin and Northwestern Ionian during the CHIANTI experiment (July 2015). The first transect runs NW to SE starting in the Vavilov basin, crossing the Marsili basin, the currently active volcanic arc of the Aeolian Islands and the Calabrian arc, ending in the accretionary prism of the NW Ionian. This transect is 〉500 km long and includes 46 OBS and 5 landstations. The second transect crosses the Vavilov basin from N to S at a longitude of 12.5ºE. This one is 180 km long and includes 15 OBS. The preliminary interpretation of the OBS data clearly shows that the crustal structure is very similar in the Marsili and Vavilov basins. They show no crust-mantle boundary reflections and high apparent velocities of up to 8 km/s a few kms below the top of the basement. These results are in good agreement with previous ones obtained in the central Tyrrhenian during the MEDOC-2010 experiment, in which a transition from extended continental crust to magmatically-affected back-arc crust to exhumed mantle that challenges current conceptual models of back-arc extension, has been interpreted. The combination of the results of these two experiments is providing a new view of the nature and configuration of the geological domains in the whole Tyrrhenian basin, giving first order constraints on the processes that have controlled its geodynamic evolution.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2016, 17.-22.04.2016, Vienna, Austria .
    Publication Date: 2016-05-03
    Description: The main objective of the CHIANTI cruise was to collect geophysical marine data to determine the deep crustal structure and plate geometry across the subduction system of the Ionian and Tyrrhenian Seas, from the frontal wedge to the arc and back-arc. The goal is to study the processes that operated during the subduction of the Ionian slab of oceanic crust under Calabria, which lead to the development of the Aeolian volcanic arc, and the subsequent opening of the Tyrrhenian basin, and are responsible of the geological hazards that threaten the region. The CHIANTI cruise onboard the Spanish R/V BO Sarmiento de Gamboa started in Barcelona (Spain) on July 12, and finished in Catania (Italy), on August 28, 2015. It consisted of four legs devoted to acquisition of data with different seismic/acoustic techniques in the Tyrrhenian and Ionian Seas. Leg 1 and 2 were focused on the acquisition of deep penetrating Wide-Angle Reflection and Refraction Seismic (WAS) data, Leg 3 on Multichannel Seismic (MCS) Reflection data and finally Leg 4 was devoted to sidescan imaging, coring and single channel seismic acquisition. During the entire cruise, complementary acoustic data (i.e. multibeam bathymetry and sub-bottom profiler) were acquired simultaneously. In this presentation we focus on the seafloor mapping and processed multichannel seismic reflection grid collected on the IONIAN prism. The data show abundant evidence of ongoing widespread deformation across the entire region from the deformation front to the uppermost slope and extending into the Calabrian emerged region. The seafloor mapping shows numerous mud volcanoes associated to fault activity. The seismic images display deformational features active across the entire prims at different locations extending the definition of structures described in previous works of the region with fewer areal coverage. The data show a prism tectonic structure that is distinct from the structure of prism in other subduction systems worldwide.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  In: The Geology of Iberia: A Geodynamic Approach Volume 3: The Alpine Cycle. , ed. by Quesada, C. and Oliveira, J. T. Springer, Cham, pp. 487-505. ISBN 978-3-030-11294-3
    Publication Date: 2020-01-07
    Description: The Alpine orogeny is well recorded onshore and offshore by tectonic inversion of the Mesozoic rift basins. Large scale linear seamounts (more than 250 km long and with up to 5 km of uplift) involving oceanic and continental lithosphere were carried on top of thrusts, such as the Gorringe seamount and the Estremadura Spur in the SouthWest and West Iberia Margin, respectively. The SouthWest Iberia Margin also recorded the westward migration of the Gibraltar Oceanic slab as the westwards propagation of the Neo-Tethys subduction. Rotation of the tectonic compression from NW-SE to WNW-ESE inPliocene times caused the development of large scale dextral wrench faults as the present day Africa-Iberia plate boundary. Neotectonics of this plate boundary caused large to mega-scale destructive earthquakes and tsunamis.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-20
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...