ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (369)
Collection
Keywords
Publisher
  • 1
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Aluminium; Ammonium; Barium; Boron; Bromide; Calcium; Chloride; Conductivity; Copper; DEPTH, sediment/rock; Event label; GC; GeoB13918; GeoB13919; GeoB13925; GeoB13926; GeoB13928; GeoB13929; GeoB13930; GeoB13934; GeoB13939; GeoB13940; GeoB13946; GeoB13952; GeoB13953; Gravity corer; Iron; Leibniz Centre for Tropical Marine Research; Lithium; Magnesium; Manganese; Oxidation reduction (RedOx) potential; pH; Phosphorus; POS386; Poseidon; Potassium; Silicon; Sodium; Strontium; Sulfate; Sulfur; Zinc; ZMT; δ18O; δ18O, standard deviation; δ Deuterium; δ Deuterium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 5330 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-09
    Keywords: Center for Marine Environmental Sciences; Comment; Density, dry bulk; DEPTH, sediment/rock; Elevation of event; Event label; GC; GeoB13919; GeoB13928; GeoB13929; GeoB13936; GeoB13941; GeoB13946; GeoB13952; GeoB16542-1; Gravity corer; Latitude of event; Lithology/composition/facies; Location; Longitude of event; MARUM; Nice Slope; POS386; POS429; POS429_085-1; Poseidon; Sand; Size fraction 〈 0.002 mm, clay; Size fraction 〉 0.006 mm, silt; Size fraction 0.125-0.063 mm, 3.0-4.0 phi, very fine sand; Size fraction 0.250-0.125 mm, 2.0-3.0 phi, fine sand; Size fraction 0.500-0.250 mm, 1.0-2.0 phi, medium sand; Size fraction 2.000-0.630 mm, coarse sand; Size fraction 2.000-1.000 mm, (-1.0)-0.0 phi, very coarse sand; Vertical stress
    Type: Dataset
    Format: text/tab-separated-values, 119 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-03
    Keywords: Center for Marine Environmental Sciences; DEPTH, water; Emden_Harbour_WS1250; Emden Harbour, Germany; MARUM; Suspended particulate matter; Water sample; Weighing dry mass per unit sample volume; WS; WS1250
    Type: Dataset
    Format: text/tab-separated-values, 6 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pape, Thomas; Geprägs, Patrizia; Hammerschmidt, Sebastian; Wintersteller, Paul; Wei, Jiangong; Fleischmann, Timo; Bohrmann, Gerhard; Kopf, Achim J (2014): Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin, Nankai Trough subduction zone. Geochemistry, Geophysics, Geosystems, 15(6), 2180-2194, https://doi.org/10.1002/2013GC005057
    Publication Date: 2023-03-03
    Description: Twelve submarine mud volcanoes (MV) in the Kumano forearc basin within the Nankai Trough subduction zone were investigated for hydrocarbon origins and fluid dynamics. Gas hydrates diagnostic for methane concentrations exceeding solubilities were recovered from MVs 2, 4, 5, and 10. Molecular ratios (C1/C2〈250) and stable carbon isotopic compositions (d13C-CH4 〉-40 per mil V-PDB) indicate that hydrate-bound hydrocarbons (HCs) at MVs 2, 4, and 10 are derived from thermal cracking of organic matter. Considering thermal gradients at the nearby IODP Sites C0009 and C0002, the likely formation depth of such HCs ranges between 2300 and 4300 m below seafloor (mbsf). With respect to basin sediment thickness and the minimum distance to the top of the plate boundary thrust we propose that the majority of HCs fueling the MVs is derived from sediments of the Cretaceous to Tertiary Shimanto belt below Pliocene/Pleistocene to recent basin sediments. Considering their sizes and appearances hydrates are suggested to be relicts of higher MV activity in the past, although the sporadic presence of vesicomyid clams at MV 2 showed that fluid migration is sufficient to nourish chemosynthesis-based organisms in places. Distributions of dissolved methane at MVs 3, 4, 5, and 8 pointed at fluid supply through one or few MV conduits and effective methane oxidation in the immediate subsurface. The aged nature of the hydrates suggests that the major portion of methane immediately below the top of the methane-containing sediment interval is fueled by current hydrate dissolution rather than active migration from greater depth.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 31 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ai, Fei; Förster, Annika; Stegmann, Sylvia; Kopf, Achim J (2014): Geotechnical Characteristics and Slope Stability Analysis on the Deeper Slope of the Ligurian Margin, Southern France. In: Kyoji Sassa, Paolo Canuti, Yueping Yin (eds.), Landslide Science for a Safer Geoenvironment, Volume 3: Targeted Landslides. Springer International Publishing AG, Switzerland, 549-555, https://doi.org/10.1007/978-3-319-04996-0_84
    Publication Date: 2023-03-03
    Description: Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth 〉1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30-75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0-20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5-5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 20 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stegmann, Sylvia; Kopf, Achim J (2014): How stable is the Nice slope? An analysis based on strength and cohesion from ring shear experiments. In: Krastel S et al. (eds.) Submarine Mass Movements and Their Consequences. Springer, Heidelberg, 189-200, https://doi.org/10.1007/978-3-319-00972-8_17
    Publication Date: 2023-03-03
    Description: The upper shelf of the landslide-prone Ligurian Margin (Western Mediterranean Sea) off Nice well-known for the 1979 Airport Landslide is a natural laboratory to study preconditioning factors and trigger mechanisms for submarine landslides. For this study low-stress ring shear experiments have been carried out on a variety of sediments from 〉50 gravity cores to characterise the velocity-dependent frictional behaviour. Mean values of the peak coefficient of friction vary from 0.46 for clay-dominated samples (53 % clay, 46 % silt, 1 %) sand up to 0.76 for coarse-grained sediments (26 % clay, 57 % silt, 17 % sand). The majority of the sediments tested show velocity strengthening regardless of the grain size distribution. For clayey sediments the peak and residual cohesive strength increases with increasing normal stress, with values from 1.3 to 10.6 kPa and up to 25 % of all strength supported by cohesive forces in the shallowmost samples. A pseudo-static slope stability analysis reveals that the different lithologies (even clay-rich material with clay content 〉=50 %) tested are stable up to slope angles 〈26° under quasi-drained conditions.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-14
    Keywords: -; DEPTH, sediment/rock; Event label; GC; GeoB13919; GeoB13925; GeoB13926; GeoB13928; GeoB13929; GeoB13930; GeoB13934; GeoB13939; GeoB13940; GeoB13946; GeoB13952; GeoB13953; Gravity corer; Leibniz Centre for Tropical Marine Research; pH; POS386; Poseidon; Saturation index; ZMT
    Type: Dataset
    Format: text/tab-separated-values, 1872 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-05-12
    Description: In October 1979, a period of heavy rainfall along the French Riviera was followed by the collapse of the Ligurian continental slope adjacent to the airport of Nice, France. A body of slope sediments, which was shortly beforehand affected by construction work south of the airport, was mobilized and traveled hundreds of kilometers downslope into the Var submarine canyon and, eventually, into the deep Ligurian basin. As a direct consequence, the construction was destroyed, seafloor cables were torn, and a small tsunami hit Antibes shortly after the failure. Hypotheses regarding the trigger mechanism include (i) vertical loading by construction of an embankment south of the airport, (ii) failure of a layer of sensitive clay within the slope sequence, and (iii) excess pore fluid pressures from charged aquifers in the underground. Over the previous decades, both the sensitive clay layers and the permeable sand and gravel layers were sampled to detect freshened waters. In 2007, the landslide scar and adjacent slopes were revisited for high-resolution seafloor mapping and systematic sampling. Results from half a dozen gravity and push cores in the shallow slope area reveal a limited zone of freshening (i.e. groundwater influence). A 100-250 m wide zone of the margin shows pore water salinities of 5-50% SW concentration and depletion in Cl, SO4, but Cr enrichment, while cores east or west of the landslide scar show regular SW profiles. Most interestingly, the three cores inside the landslide scar hint towards a complex hydrological system with at least two sources for groundwater. The aquifer system also showed strong freshening after a period of several months without significant precipitation. This freshening implies that charged coarse-grained layers represent a permanent threat to the slope's stability, not just after periods of major rainfall such as in October 1979.
    Keywords: Center for Marine Environmental Sciences; GC; GeoB12003; GeoB12019; GeoB12042; Gravity corer; Ligurian Margin; M73/1; M73/1_653-1; M73/1_691-1; M73/1_754-1; MARUM; Meteor (1986)
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikari, Matt J; Hüpers, Andre; Kopf, Achim J (2013): Shear strength of sediments approaching subduction in the Nankai Trough, Japan as constraints on forearc mechanics. Geochemistry, Geophysics, Geosystems, 14(8), 2716-2730, https://doi.org/10.1002/ggge.20156
    Publication Date: 2023-05-12
    Description: The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Förster, Annika; Ellis, Richard G; Henrich, Rüdiger; Krastel, Sebastian; Kopf, Achim J (2010): Geotechnical characteriazation and strain analyses of sediment in the Mauritania Slide Complex, NW-Africa. Marine and Petroleum Geology, 27(6), 1175-1189, https://doi.org/10.1016/j.marpetgeo.2010.02.013
    Publication Date: 2023-05-12
    Description: Mass wasting processes are a common phenomenon along the continental margin of NW-Africa. Located on the high-upwelling regime off the Mauritanian coastline, the Mauritania Slide Complex (MSC) is one of the largest events known on the Atlantic margin with an affected area of ~30000 km**2. Understanding previous failure events as well as its current hazard potential are crucial for risk assessment with respect to offshore installations and tsunamis. We present the results of geotechnical measurements and strain analyses on sediment cores taken from both the stable and the failed part of the MSC and compare them to previously published geophysical and sedimentological data. The material originates from water depths of 1500-3000 m and consists of detached slide deposits separated by undisturbed hemipelagic sediments. While the hemipelagites are characterized by normal consolidation with a downward increase in bulk density and shear strength (from 1.68 to 1.8 g/cm**3, 2-10 kPa), the slid deposits of the uppermost debris flow event preserve constant bulk density values (1.75 and 1.8 g/cm**3) with incisions marking different flow events. These slid sediments comprise three different matrix types, with normal consolidation at the base (OCR = 1.04), strong overconsolidation (OCR = 3.96) in the middle and normal consolidation to slight overconsolidation at the top (OCR = 0.91-1.28). However, the hemipelagic sediments underlying the debris flow units, which have been 14C dated at 〈24 ka BP, show strong to slight underconsolidation (OCR = 0.65-0.79) with low friction coefficients of µ = 0.18. Fabric analyses show deformation intensities R 〉= 4 (ratio Sigma1/Sigma3) in several of the remobilized sediments. Such high deformation is also attested by observed disintegrated clasts from the underlying unit in the youngest debrites (14C-age of 10.5-10.9 ka BP). These clasts show strong consolidation and intense deformation, implying a pre-slide origin and amalgamation into the mass transport deposits. While previous studies propose an emplacement by retrogressive failure for thick slide deposits separated by undisturbed units, our new data on geotechnical properties, strain and age infer at least two different source areas with a sequential failure mechanism as the origin for the different mass wasting events.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...