ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-31
    Description: Abstract
    Description: The SWATH-D experiment is dense deployment of 154 seismic stations in the Central and Eastern Alps between Italy and Austria, complementing the larger-scale sparser AlpArray Seismic Network (AASN). SWATH-D will provide high resolution images from the surface into the upper mantle, and allow observations of local seismicity. SWATH-D focuses on a key area of the Alps where the hypothesized flip in subduction polarity has been suggested, and where an earlier seismic profile (TRANSALP) has imaged a jump in the Moho. Where mains power is available (at ca. 80 sites) stations are providing realtime data via the cellphone network and are equipped with Güralp CMG-3EPSC (60s) seismometers and Earth Data Recorders EDR-210. The rest of the stations are offline and consist mainly of Nanometrics Trillium Compact (120s) and Güralp CMG-3EPSC (60s) seismometers equipped with either Omnirecs CUBE3 or PR6-24 Earth Data Loggers. All stations are equipped with external GPS antennas and the sampling rate is 100 Hz (Heit, et al., 2018). The network will operate for 2 years starting in July 2017. The Swath-D data will be used directly by 20 individual proposals of the MB-4D Priority Program (Mountain Building Processes in Four Dimensions, 2017) of the German Research Foundation (DFG) and data products derived from it will contribute to additional 13 proposals. SWATH-D is thus an important link between the MB-4D Priority Program and the international AlpArray communities and a scientific service to many of the proposals within the DFG Priority Program. Waveform data are available from the GEOFON data centre, under network code ZS, and are embargoed until August 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 ARCHIVING ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; seismology
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The Bransfield Strait is a seismically active extensional rift located between the Antarctic Peninsula and the South Shetland Islands. The Strait is partly located on continental crust including areas within the transition to seafloor spreading. The amphibious seismic network BRAVOSEIS is an international effort focused on the seismological research of submarine volcanoes and rift dynamics in the Bransfield Strait. This network is the onshore component of the entire network consisting of 15 broadband land stations deployed in the South Shetland Islands and Antarctic Peninsula between January 2018 and February 2020. The offshore components (network code ZX) include 9 broadband ocean bottom seismometers (OBS) across the Central Bransfield Basin and a group of 6 hydrophone moorings spanning the rift area of 200 x 100 km2, with inter-station distance of ~30 km. Additionally, a smaller offshore array consisting of 15 short-period OBSs with an aperture of 20 km and a narrow inter-station distance of ~4 km was deployed around the Orca submarine volcanic edifice south of King George Island. The data will be used to study the geodynamics of the Bransfield Strait and the evolution of the incipient rifting zone in the domain where extension has been suggested. Seismological methods will include earthquake location, source mechanism, surface wave analysis with ambient noise and earthquake data, receiver function and shear wave splitting. The results may shed light on the crustal structure and tectonic regime in the region and image the location and extent of magma accumulations related to submarine volcanic structures. Finally, the results should provide clues to assess the internal processes that occur in the submarine volcanoes of the area undergoing rifting. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until March 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: On 1st April, 23:46:50 UTC, an Mw 8.1 earthquake ruptured offshore northern Chile, near the town of Pisagua northwest of Iquique, followed one day later by a Mw7.6 event, both events in the centre of the Integrated Plate boundary Observatory Chile (IPOC). These earthquakes occurred within a seismic gap left behind by two great earthquakes devastating the northern Chilean and southern Peruvian coast about 140 years ago in 1868 and 1877. The segment inbetween, about 500 km long, was the only one along the Chilean subduction zone that has not ruptured within the last century. The earthquakes were recorded by the IPOC multi-parameter stations plus several additional off-line strong- and weak-motion instruments. A network of GPS monuments covering the onshore region deformed by the earthquake was measured just weeks before the event by GFZ scientists. Taking advantage of the long history of preceding work, presence of the permanent multi-parameter network and excellent knowledge of GFZ scientists of the region, a 20 short-period seismograph network was installed to complement the existing pre- and co-seismic data sets. This campaign was the first case for the „HAzard-Risk-Team (HART)“ initiative of GFZ. Stations operated from mid April 2014, i.e. shortly after the mainshock, to January 2016.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Central Andes ; local seismicity ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~110G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...