ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (102)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-03-07
    Keywords: AWI_PerDyn; BAL16-B2; BAL16-B4; Baldwin Peninsula, West Alaska; Branched glycerol dialkyl glycerol tetraether, I, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, Ib, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, Ic, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, II, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, IIb, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, IIc, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, III, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, IIIb, per unit mass total organic carbon; Branched glycerol dialkyl glycerol tetraether, IIIc, per unit mass total organic carbon; Crenarchaeol, per unit mass total organic carbon; DATE/TIME; Depth, bottom/max; DEPTH, sediment/rock; Event label; EXPO; Exposure; Latitude of event; Longitude of event; Permafrost Research (Periglacial Dynamics) @ AWI; Sample code/label; Sediment type
    Type: Dataset
    Format: text/tab-separated-values, 170 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-07
    Keywords: AWI_PerDyn; BAL16-B2; BAL16-B4; Baldwin Peninsula, West Alaska; Carbon Preference Index; DATE/TIME; Depth, bottom/max; DEPTH, sediment/rock; Event label; EXPO; Exposure; Latitude of event; Longitude of event; n-Alkane, average chain length; n-Alkane, per unit mass total organic carbon; n-Alkane C14, per unit mass total organic carbon; n-Alkane C15, per unit mass total organic carbon; n-Alkane C16, per unit mass total organic carbon; n-Alkane C17, per unit mass total organic carbon; n-Alkane C18, per unit mass total organic carbon; n-Alkane C19, per unit mass total organic carbon; n-Alkane C20, per unit mass total organic carbon; n-Alkane C21, per unit mass total organic carbon; n-Alkane C22, per unit mass total organic carbon; n-Alkane C23, per unit mass total organic carbon; n-Alkane C24, per unit mass total organic carbon; n-Alkane C25, per unit mass total organic carbon; n-Alkane C26, per unit mass total organic carbon; n-Alkane C27, per unit mass total organic carbon; n-Alkane C28, per unit mass total organic carbon; n-Alkane C29, per unit mass total organic carbon; n-Alkane C30, per unit mass total organic carbon; n-Alkane C31, per unit mass total organic carbon; n-Alkane C32, per unit mass total organic carbon; n-Alkane C33, per unit mass total organic carbon; n-Alkane C34, per unit mass total organic carbon; n-Alkane C35, per unit mass total organic carbon; Permafrost Research (Periglacial Dynamics) @ AWI; Sample code/label; Sediment type
    Type: Dataset
    Format: text/tab-separated-values, 365 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; erosion; n-alkane; n-fatty acids; Siberia; Yedoma
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: AGE; AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Carbon, organic, total; Carbon/Nitrogen ratio; Carbon Preference Index, n-Alkanes; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; erosion; Event label; Height above river level; Higher plant n-fatty acids, per unit sediment mass; Lithologic unit/sequence; n-alkane; n-Alkane, average chain length; n-Alkanes, long-chain, per unit mass total organic carbon; n-Alkanes, long-chain per unit sediment mass; n-Alkanes, short-chain, per unit mass total organic carbon; n-Alkanes, short-chain per unit sediment mass; n-fatty acids; n-fatty acids, C21-C23, per unit mass total organic carbon; n-fatty acids, C21-C23, per unit sediment mass; n-fatty acids, long-chain, per unit mass total organic carbon; n-fatty acids, long-chain per unit sediment mass; n-fatty acids, per unit mass total organic carbon; n-fatty acids, per unit sediment mass; n-fatty acids, short-chain, per unit mass total organic carbon; n-fatty acids, short-chain per unit sediment mass; Nitrogen, total; PERM; Ratio; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Sum n-alkanes C14-C35, per unit mass total organic carbon; Sum n-alkanes C14-C35, per unit sediment mass; Yedoma; δ13C, organic matter
    Type: Dataset
    Format: text/tab-separated-values, 545 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: 10-methyl-fatty acid C14:0, per unit mass total organic carbon; 10-methyl-fatty acid C16:0, per unit mass total organic carbon; 10-methyl-fatty acid C17:0, per unit mass total organic carbon; 10-methyl-fatty acid C18:0, per unit mass total organic carbon; 12-methyl-fatty acid C16:0, per unit mass total organic carbon; 12-methyl-fatty acid C18:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C6:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C7:0, per unit mass total organic carbon; 3-hydroxyl-fatty acid C8:0, per unit mass total organic carbon; anteiso-fatty acid C11:0, per unit mass total organic carbon; anteiso-fatty acid C12:0, per unit mass total organic carbon; anteiso-fatty acid C13:0, per unit mass total organic carbon; anteiso-fatty acid C15:0, per unit mass total organic carbon; anteiso-fatty acid C17:0, per unit mass total organic carbon; anteiso-fatty acid C17:1, per unit mass total organic carbon; AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; cyclo-fatty acid C17, per unit mass total organic carbon; cyclo-fatty acid C19, per unit mass total organic carbon; erosion; Event label; fatty acid C16:1w5, per unit mass total organic carbon; fatty acid C16:1w7cis, per unit mass total organic carbon; fatty acid C16:1w7trans, per unit mass total organic carbon; fatty acid C18:1w7cis, per unit mass total organic carbon; fatty acid C18:1w7trans, per unit mass total organic carbon; fatty acid C18:1w9, per unit mass total organic carbon; fatty acid C18:2w6,9, per unit mass total organic carbon; Height above river level; iso-fatty acid C10:0, per unit mass total organic carbon; iso-fatty acid C11:0, per unit mass total organic carbon; iso-fatty acid C13:0, per unit mass total organic carbon; iso-fatty acid C14:0, per unit mass total organic carbon; iso-fatty acid C15:0, per unit mass total organic carbon; iso-fatty acid C16:0, per unit mass total organic carbon; iso-fatty acid C17:0, per unit mass total organic carbon; iso-fatty acid C17:1, per unit mass total organic carbon; iso-fatty acid C18:0, per unit mass total organic carbon; iso-fatty acid C19:0, per unit mass total organic carbon; methyl-fatty acid C16:0, per unit mass total organic carbon; methyl-fatty acid C17:0, per unit mass total organic carbon; n-alkane; n-fatty acid C10:0, per unit mass total organic carbon; n-fatty acid C11:0, per unit mass total organic carbon; n-fatty acid C12:0, per unit mass total organic carbon; n-fatty acid C13:0, per unit mass total organic carbon; n-fatty acid C14:0, per unit mass total organic carbon; n-fatty acid C15:0, per unit mass total organic carbon; n-fatty acid C16:0, per unit mass total organic carbon; n-fatty acid C17:0, per unit mass total organic carbon; n-fatty acid C17:1, per unit mass total organic carbon; n-fatty acid C18:0, per unit mass total organic carbon; n-fatty acid C18:3, per unit mass total organic carbon; n-fatty acid C19:0, per unit mass total organic carbon; n-fatty acid C19:1, per unit mass total organic carbon; n-fatty acid C20:0, per unit mass total organic carbon; n-fatty acid C20:1, per unit mass total organic carbon; n-fatty acid C21:0, per unit mass total organic carbon; n-fatty acid C22:0, per unit mass total organic carbon; n-fatty acid C23:0, per unit mass total organic carbon; n-fatty acid C24:0, per unit mass total organic carbon; n-fatty acid C24:1, per unit mass total organic carbon; n-fatty acid C25:0, per unit mass total organic carbon; n-fatty acid C26:0, per unit mass total organic carbon; n-fatty acid C27:0, per unit mass total organic carbon; n-fatty acid C28:0, per unit mass total organic carbon; n-fatty acid C29:0, per unit mass total organic carbon; n-fatty acid C30:0, per unit mass total organic carbon; n-fatty acid C32:0, per unit mass total organic carbon; n-fatty acid C8:0, per unit mass total organic carbon; n-fatty acid C9:0, per unit mass total organic carbon; n-fatty acids; PERM; Phytanoic acid, per unit mass total organic carbon; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Standard deviation; Stigmastenone, per unit mass total organic carbon; Yedoma
    Type: Dataset
    Format: text/tab-separated-values, 923 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
    Keywords: AWI Arctic Land Expedition; Biomarker; CACOON; Carbon; Changing Arctic Carbon cycle in the cOastal Ocean Near-shore; erosion; Event label; Height above river level; n-alkane; n-Alkane C14, per unit mass total organic carbon; n-Alkane C14, per unit sediment mass; n-Alkane C15, per unit mass total organic carbon; n-Alkane C15, per unit sediment mass; n-Alkane C16, per unit mass total organic carbon; n-Alkane C16, per unit sediment mass; n-Alkane C17, per unit mass total organic carbon; n-Alkane C17, per unit sediment mass; n-Alkane C18, per unit mass total organic carbon; n-Alkane C18, per unit sediment mass; n-Alkane C19, per unit mass total organic carbon; n-Alkane C19, per unit sediment mass; n-Alkane C20, per unit mass total organic carbon; n-Alkane C20, per unit sediment mass; n-Alkane C21, per unit mass total organic carbon; n-Alkane C21, per unit sediment mass; n-Alkane C22, per unit mass total organic carbon; n-Alkane C22, per unit sediment mass; n-Alkane C23, per unit mass total organic carbon; n-Alkane C23, per unit sediment mass; n-Alkane C24, per unit mass total organic carbon; n-Alkane C24, per unit sediment mass; n-Alkane C25, per unit mass total organic carbon; n-Alkane C25, per unit sediment mass; n-Alkane C26, per unit mass total organic carbon; n-Alkane C26, per unit sediment mass; n-Alkane C27, per unit mass total organic carbon; n-Alkane C27, per unit sediment mass; n-Alkane C28, per unit mass total organic carbon; n-Alkane C28, per unit sediment mass; n-Alkane C29, per unit mass total organic carbon; n-Alkane C29, per unit sediment mass; n-Alkane C30, per unit mass total organic carbon; n-Alkane C30, per unit sediment mass; n-Alkane C31, per unit mass total organic carbon; n-Alkane C31, per unit sediment mass; n-Alkane C32, per unit mass total organic carbon; n-Alkane C32, per unit sediment mass; n-Alkane C33, per unit mass total organic carbon; n-Alkane C33, per unit sediment mass; n-Alkane C34, per unit mass total organic carbon; n-Alkane C34, per unit sediment mass; n-Alkane C35, per unit mass total organic carbon; n-Alkane C35, per unit sediment mass; n-fatty acids; PERM; RU-Land_2018_Lena_Sobo-Sise; Sample ID; Sampling permafrost; Siberia; SOB18-01; SOB18-03; SOB18-06; Sobo-Sise 2018; Sobo-Sise Island; Yedoma
    Type: Dataset
    Format: text/tab-separated-values, 1294 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-27
    Keywords: AWI_PerDyn; BAL16-B2; BAL16-B3; BAL16-B4; BAL16-B5; BAL16-UPL1-L1; Baldwin Peninsula, West Alaska; Carbon, organic, total; Carbon, total; Carbon/Nitrogen ratio; DATE/TIME; Density, wet bulk; Depth, bottom/max; DEPTH, sediment/rock; Event label; EXPO; Exposure; Ice content; Latitude of event; Longitude of event; Nitrogen, total; PC; Permafrost Research (Periglacial Dynamics) @ AWI; Piston corer; Sample code/label; Sand; Sediment type; Silt; Size fraction 〈 0.002 mm, clay; δ13C
    Type: Dataset
    Format: text/tab-separated-values, 940 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-27
    Keywords: Activity of radiocarbon in percent of modern carbon, standard deviation; AGE; Age, 14C AMS; Age, 14C calibrated, CALIB 7.1 (Stuiver et al. 2017); Age, dated; Age, dated standard deviation; Age, standard deviation; AWI_PerDyn; BAL16-B2; BAL16-B4; BAL16-UPL1-L1; Baldwin Peninsula, West Alaska; DATE/TIME; Depth, bottom/max; DEPTH, sediment/rock; Event label; EXPO; Exposure; Latitude of event; Longitude of event; PC; Permafrost Research (Periglacial Dynamics) @ AWI; Piston corer; Sample code/label; Sediment type
    Type: Dataset
    Format: text/tab-separated-values, 90 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fuchs, Matthias; Grosse, Guido; Jones, Benjamin M; Strauss, Jens; Baughman, Carson A; Walker, Donald A (2018): Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. arktos - The Journal of Arctic Geosciences, 4(1), https://doi.org/10.1007/s41063-018-0056-9
    Publication Date: 2023-06-30
    Description: This data set describes the soil core and sample characteristics from the Ikpikpuk and Fish Creek river delta on the Arctic Coastal Plain in northern Alaska. The collection of the permafrost soil cores and the analysis of the samples are described in Fuchs et al. (2018). Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. This data compilation consists of two data set. The first data set describes the properties of the collected permafrost soil cores from the Ikpikpuk river (IKP) and Fish Creek river (FCR) delta. This includes the coordinates of the nine coring locations, the field measurements of the active- and organic layer thickness at the coring locations, and the length of the collected permafrost core. In addition, soil organic carbon and soil nitrogen stocks and densities derived from the laboratory analyses for the reference depths 0-30 cm, 0-100 cm, 0-150 cm and 0-200 cm are presented in kg C m-2 and in kg C m-3. The second data set provides the raw laboratory data for all the samples of the nine collected permafrost cores in the Ikpikpuk and Fish Creek River Delta. All laboratory analyzes were carried out at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam. The third data set presents the results from the radiocarbon dating of chosen samples from five different permafrost cores. This includes the AMS radiocarbon date and the calibrated age of a sample. In addition, the sediment and organic carbon accumulation rates for the dated samples are included. This data set allows to calculate the total carbon and nitrogen storage in two small Arctic river deltas (IKP and FCR) for the first two meter of soil and enlarges the available permafrost cores for Arctic river delta deposits.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI; PETA-CARB; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fuchs, Matthias; Lenz, Josefine; Jock, Suzanne; Nitze, Ingmar; Jones, Benjamin M; Strauss, Jens; Günther, Frank; Grosse, Guido (2019): Organic Carbon and Nitrogen Stocks Along a Thermokarst Lake Sequence in Arctic Alaska. Journal of Geophysical Research: Biogeosciences, 124(5), 1230-1247, https://doi.org/10.1029/2018JG004591
    Publication Date: 2023-06-30
    Description: This data set includes the data for the publication Fuchs et al. (2019), Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska, doi:10.1029/2018JG004591. Impacts of successive thermokarst lake stages on soil organic carbon and nitrogen storage, Arctic Alaska. This study combines terrestrial and lacustrine cores to a depth of two meters for a carbon and nitrogen stock estimation in a heavily thermokarst affected study region as well as describes the landscape chronology of the study area which is characterized by multiple drained thermokarst lake basins of different generations. The first data set (doi:10.1594/PANGAEA.895163) includes the raw laboratory data (TOC, TC, TN, C/N) from the permafrost cores collected at the Teshekpuk Lake Area. The data for the lacustrine cores are published on Pangaea and accessible with the link: https://doi.org/10.1594/PANGAEA.864814 (Lenz et al., 2016). All laboratory analyses on the terrestrial cores were carried out at the Alfred Wegener Institute Potsdam. The second data set (doi:10.1594/PANGAEA.895165) presents the carbon (in kg C m-2) and nitrogen (in kg N m-2) stocks for all the collected cores for the reference depths 0-30 cm, 0-100 cm, 0-150 cm, 0-200 cm. This includes terrestrial as well as lacustrine cores. The third data set (doi:10.1594/PANGAEA.895166) includes 19 radiocarbon dates from five different permafrost cores. The samples were analyzed at the Radiocarbon Laboratory in Poznan, Poland with the accelerated mass spectrometry (AMS) dating method (Goslar et al., 2004). In addition to the AMS dates, the radiocarbon dates were calibrated with the Calib 7.1 software into calibrated years before present and organic carbon accumulation rates were calculated for each of the cores (Stuiver & Reimer, 1993; Stuiver et al., 2017). In addition, a shapefile (Landforms_Teshekpuk_Area) is available including drained thermokarst lake basins of different lake stages, thermokarst lakes (〉1 ha), primary surfaces and drainage channels. This landform classification was used in the original study to characterize the chronology of the landscape as well as to calculate landscape carbon and nitrogen stocks.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI; PETA-CARB; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...