ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sauer, Simone; Knies, Jochen; Lepland, Aivo; Chand, S; Eichinger, Florian; Schubert, Carsten J (2015): Hydrocarbon sources of cold seeps off the Vesteralen coast, northern Norway. Chemical Geology, 417, 371-382, https://doi.org/10.1016/j.chemgeo.2015.10.025
    Publication Date: 2023-09-02
    Description: We investigated active methane seeps in a water depth of 200 m in the Hola area off the coast of Vesteralen, northern Norway, to assess (1) hydrocarbon sources, (2) migration pathways and (3) the influence of hydrocarbon seepage on sediment pore water and water column chemistry. The seepage area is characterised by the presence of gas flares in the water column as revealed by hydro acoustic surveys and elevated methane concentrations of up to 42 nM ca. 5 m above the seafloor. Pore water analyses of three gravity cores from the seepage area show varying depths of the sulphate-methane-transition zone (SMTZ) between 80 cm and 〉 250 cm indicating spatially heterogeneous methane ascent. The isotopic composition of methane (d13C from - 40per mil to - 63per mil and d2H from - 191per mil to - 225per mil) and d13C depth profiles of methane and dissolved inorganic carbon show that the hydrocarbons are predominantly of thermogenic origin, consistent with d13C values of C2 to C4 hydrocarbons. Isotope data also indicate considerable biodegradation of propane. Seismic profiles from the study area reveal major faults and steeply dipping unconformities between the basement and overlying Mesozoic sedimentary rocks. We propose that these act as migration pathways for the hydrocarbons from late Jurassic to early Cretaceous source rocks.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-02
    Keywords: CTD, Seabird; CTD, Sea-Bird, SBE 911; CTD-R; DEPTH, water; HH13_CTD-209; Norway; Oxygen; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 654 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-02
    Keywords: DEPTH, sediment/rock; Event label; GC; Gravity corer; HH13_GC-51; HH13_GC-52; Norway; δ13C, butane; δ13C, ethane; δ13C, isobutane; δ13C, methane; δ13C, propane; δ Deuterium, methane
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-02
    Keywords: Ammonium; Calcium ion; Chloride; DEPTH, sediment/rock; Event label; GC; Gravity corer; HH13_GC-24; HH13_GC-51; HH13_GC-52; Hydrogen sulfide anion; Iron 2+; Methane; Norway; Phosphate; Sulfate; δ13C, dissolved inorganic carbon; δ13C, methane; δ Deuterium, methane
    Type: Dataset
    Format: text/tab-separated-values, 398 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. On 29th and 30th of April 2021 five thermal water samples were taken by Hydroisotop from five different springs/wells located at Wildbad-Einöd. The samples were analysed for hydrochemical composition, heavy metals and dissolved organic carbon (DOC) content. It can be noted that the bromide content of sample 361625 is much lower than the bromide content in the other four springs. Since the chloride content in all springs is the same order of magnitude and Cl/Br ratios are expected to be similar in the same The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling (muS/cm),Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Temperature Lab. (degC),Dissolved oxygen content (mg/l),Redox potential (mV),Base capacity (pH 8.2) (mmol/l),Alkalinity (pH 4.3) on site (mmol/l),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Nitrite (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Iron total (mg/l),Manganese total (mg/l),DOC (mg/l) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. At the geothermal site Blumau in Austria five thermal water samples were taken by Hydroisotop at the production and injection well, as well as after the heat exchanger on 29th of June 2020. Besides the hydrochemical composition, dissolved gases, the heavy metal content, DOC and stable isotopes (18O, 2H, 13C-DIC) were analysed. Additionally, three thermal water samples were taken by the operator on 09th of March 2021 and sent to Hydroisotop for DOC measurements. The dataset contains analysis results associated with the research project reflect. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory,Lab No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling,Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Temperature Lab. (degC),Dissolved oxygen content (mg/l),Redox potential (mV),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Nitrite (mg/l),Antimony (mg/l),Barium (mg/l),Boron (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Molybdenum (mg/l),Ortho-phosphate (mg/l),Selenium (mg/l),Strontium (mg/l),Sulphide total (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Cadmium (mg/l),Chromium total (mg/l),Cobalt (mg/l),Iron total (mg/l),Copper (mg/l),Nickel (mg/l),Mercury (mg/l),Zinc (mg/l),Tin (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Ethene (Nml/kg),Propene (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C).
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. Two thermal water samples were taken by Hydroisotop at the production and injection wells in Insheim on 18th of June 2020. The samples were analysed for their hydrochemical composition, heavy metal and dissolved organic carbon (DOC) content, dissolved gases and stable isotopes of water and gas components (18O, 2H, 34S-H2S, 34S-SO4, 18O-SO4, 13C-DIC, 13C-CO2, 13C-CH4, 2H-CH4). Nitrate and a positive redox potential is present in both water samples when reducing conditions would be expected in a deep geothermal well. On-site measurements showed no oxygen present. It is however possible that air contamination during sampling caused some ammonium to oxidize to nitrate. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling (muS/cm),Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Dissolved oxygen content (mg/l),Redox potential (mV),Base capacity (pH 8.2) (mmol/l),Alkalinity (pH 4.3) on site (mmol/l),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Molybdenum (mg/l),Total phosphate (mg/l),Ortho-phosphate (mg/l),Silicon (mg/l),Strontium (mg/l),Sulphide total (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB),Sulphur-34 d34S-SO4 (per mille V-CDT),Sulphur-34 d34S-H2S (per mille V-CDT),Oxygen-18 d18O-SO4 (per mille VSMOW),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VPDB). Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626/de
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...