ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (2)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Moya, Aurélie; Huisman, L; Ball, E E; Hayward, D C; Grasso, L C; Chua, C M; Woo, H N; Gattuso, Jean-Pierre; Forêt, S; Miller, David J (2012): Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Molecular Ecology, 21(10), 2440-2454, https://doi.org/10.1111/j.1365-294X.2012.05554.x
    Publication Date: 2024-03-15
    Description: The impact of ocean acidification (OA) on coral calcification, a subject of intense current interest, is poorly understood in part because of the presence of symbionts in adult corals. Early life history stages of Acropora spp. provide an opportunity to study the effects of elevated CO(2) on coral calcification without the complication of symbiont metabolism. Therefore, we used the Illumina RNAseq approach to study the effects of acute exposure to elevated CO(2) on gene expression in primary polyps of Acropora millepora, using as reference a novel comprehensive transcriptome assembly developed for this study. Gene ontology analysis of this whole transcriptome data set indicated that CO(2) -driven acidification strongly suppressed metabolism but enhanced extracellular organic matrix synthesis, whereas targeted analyses revealed complex effects on genes implicated in calcification. Unexpectedly, expression of most ion transport proteins was unaffected, while many membrane-associated or secreted carbonic anhydrases were expressed at lower levels. The most dramatic effect of CO(2) -driven acidification, however, was on genes encoding candidate and known components of the skeletal organic matrix that controls CaCO(3) deposition. The skeletal organic matrix effects included elevated expression of adult-type galaxins and some secreted acidic proteins, but down-regulation of other galaxins, secreted acidic proteins, SCRiPs and other coral-specific genes, suggesting specialized roles for the members of these protein families and complex impacts of OA on mineral deposition. This study is the first exhaustive exploration of the transcriptomic response of a scleractinian coral to acidification and provides an unbiased perspective on its effects during the early stages of calcification.
    Keywords: Acropora millepora; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene expression, fold change, relative; Gene expression (incl. proteomics); Gene name; Genetic sequence; Identification; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric; Replicates; Salinity; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 2489 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Foster, Taryn; Gilmour, J P; Chua, C M; Falter, James L; McCulloch, Malcolm T (2015): Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs, 34(4), 1217-1226, https://doi.org/10.1007/s00338-015-1342-7
    Publication Date: 2024-03-15
    Description: This study investigated the impacts of acidified seawater (pCO2 900 µatm) and elevated water temperature (+3 °C) on the early life history stages of Acropora spicifera from the subtropical Houtman Abrolhos Islands (28°S) in Western Australia. Settlement rates were unaffected by high temperature (27 °C, 250 µatm), high pCO2 (24 °C, 900 µatm), or a combination of both high temperature and high pCO2 treatments (27 °C, 900 µatm). There were also no significant differences in rates of post-settlement survival after 4 weeks of exposure between any of the treatments, with survival ranging from 60 to 70 % regardless of treatment. Similarly, calcification, as determined by the skeletal weight of recruits, was unaffected by an increase in water temperature under both ambient and high pCO2 conditions. In contrast, high pCO2 significantly reduced early skeletal development, with mean skeletal weight in the high pCO2 and combined treatments reduced by 60 and 48 %, respectively, compared to control weights. Elevated temperature appeared to have a partially mitigative effect on calcification under high pCO2; however, this effect was not significant. Our results show that rates of settlement, post-settlement survival, and calcification in subtropical corals are relatively resilient to increases in temperature. This is in marked contrast to the sensitivity to temperature reported for the majority of tropical larvae and recruits in the literature. The subtropical corals in this study appear able to withstand an increase in temperature of 3 °C above ambient, indicating that they may have a wider thermal tolerance range and may not be adversely affected by initial increases in water temperature from subtropical 24 to 27 °C. However, the reduction in skeletal weight with high pCO2 indicates that early skeletal formation will be highly vulnerable to the changes in ocean pCO2 expected to occur over the twenty-first century, with implications for their longer-term growth and resilience.
    Keywords: Abrolhos_Islands; Acropora spicifera; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate; Calcification rate, standard error; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Mass; Mass, standard error; Mortality/Survival; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Registration number of species; Reproduction; Salinity; Settlement; Settlement, standard error; Single species; South Pacific; Species; Survival; Survival rate, standard error; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...