ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (15)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Depoorter, Mathieu A; Bamber, Jonathan L; Griggs, Jennifer; Lenaerts, Jan T M; Ligtenberg, Stefan R M; van den Broeke, Michiel R; Moholdt, Geir (2013): Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 89-92, https://doi.org/10.1038/nature12567
    Publication Date: 2023-01-13
    Description: Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-sheet base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jordan, Thomas M; Williams, Christopher N; Schroeder, Dustin M; Martos, Yasmina M; Cooper, Michael A; Siegert, Martin J; Paden, John D; Huybrechts, Philippe; Bamber, Jonathan L (2018): A constraint upon the basal water distribution and thermal state of the Greenland Ice Sheet from radar bed echoes. The Cryosphere, 12(9), 2831-2854, https://doi.org/10.5194/tc-12-2831-2018
    Publication Date: 2023-01-13
    Description: There is widespread, but often indirect, evidence that a significant fraction of the bed beneath the Greenland Ice Sheet is thawed (at or above the pressure melting point for ice). This includes the beds of major outlet glaciers and their tributaries and a large area around the NorthGRIP borehole in the ice-sheet interior. The ice-sheet scale distribution of basal water is, however, poorly constrained by existing observations. In principle, airborne radio-echo sounding (RES) enables the detection of basal water from bed-echo reflectivity, but unambiguous mapping is limited by uncertainty in signal attenuation within the ice. Here we introduce a new, RES diagnostic for basal water that is associated with wet-dry transitions in bed material: bed-echo reflectivity variability. This technique acts as a form of edge detector and is a sufficient, but not necessary, criteria for basal water. However, the technique has the advantage of being attenuation-insensitive and suited to data combination enabling combined analysis of over a decade of Operation IceBridge survey data. The basal water predictions are compared with existing analyses of the basal thermal state (frozen and thawed beds) and geothermal heat flux. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern interior. Notably, we observe a quasi-linear 'corridor' of basal water extending from NorthGRIP to Petermann glacier that spatially correlates with elevated heat flux predicted by a recent magnetic model. Finally, with a general aim to stimulate regional- and process-specific investigations, the basal water predictions are compared with bed topography, subglacial flow paths, and ice-sheet motion. The basal water distribution, and its relationship with the thermal state, provides a new constraint for numerical models.
    Keywords: DATE/TIME; File content; File format; File name; File size; Greenland; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schumacher, Maike; King, Matt; Rougier, Jonathan C; Sha, Zhe; Khan, Shfaqat Abbas; Bamber, Jonathan L (2018): A new global GPS data set for testing and improving modelled GIA uplift rates. Geophysical Journal International, 214(3), 2164-2176, https://doi.org/10.1093/gji/ggy235
    Publication Date: 2023-01-13
    Description: We have produced a global dataset of ~4000 GPS vertical velocities that can be used as observational estimates of glacial isostatic adjustment (GIA) uplift rates. GIA is the response of the solid Earth to past ice loading, primarily, since the Last Glacial Maximum, about 20 K yrs BP. Modelling GIA is challenging because of large uncertainties in ice loading history and also the viscosity of the upper and lower mantle. GPS data contain the signature of GIA in their uplift rates but these also contain other sources of vertical land motion (VLM) such as tectonics, human and natural influences on water storage that can mask the underlying GIA signal. A novel fully-automatic strategy was developed to post-process the GPS time series and to correct for non-GIA artefacts. Before estimating vertical velocities and uncertainties, we detected outliers and jumps and corrected for atmospheric mass loading displacements. We corrected the resulting velocities for the elastic response of the solid Earth to global changes in ice sheets, glaciers, and ocean loading, as well as for changes in the Earth's rotational pole relative to the 20th century average. We then applied a spatial median filter to remove sites where local effects were dominant to leave approximately 4000 GPS sites. The resulting novel global GPS dataset shows a clean GIA signal at all post-processed stations and is suitable to investigate the behaviour of global GIA forward models. The results are transformed from a frame with its origin in the centre of mass of the total Earth's system (CM) into a frame with its origin in the centre of mass of the solid Earth (CE) before comparison with 13 global GIA forward model solutions, with best fits with Pur-6-VM5 and ICE-6G predictions. The largest discrepancies for all models were identified for Antarctica and Greenland, which may be due to either uncertain mantle rheology, ice loading history/magnitude and/or GPS errors.
    Keywords: LATITUDE; LONGITUDE; Station label; Velocity, vertical; Velocity, vertical, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 12216 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bamber, Jonathan L; Westaway, Richard M; Marzeion, Ben; Wouters, Bert (2018): The land ice contribution to sea level during the satellite era. Environmental Research Letters, 13(6), 063008, https://doi.org/10.1088/1748-9326/aac2f0
    Publication Date: 2023-01-13
    Description: We have assessed and synthesised land ice mass trend results published, primarily, since the IPCC AR5 (2013) to produce a consistent estimate of land ice mass trends during the satellite era (1992 to 2016). Our resulting synthesis is both consistent and rigorous, drawing on i) the published literature, ii) expert assessment of that literature, and iii) a new analysis of Arctic glacier and ice cap trends combined with statistical modelling. In the associated paper (Bamber et al 2018) we present annual and pentad (five-year mean) time series for the East, West Antarctic and Greenland Ice Sheets and glaciers separately and combined. When averaged over pentads, covering the entire period considered, we obtain a monotonic trend in mass contribution to the oceans, increasing from 0.31±0.35 mm of sea level equivalent for 1992-1996 to 1.85±0.13 for 2012-2016. Our integrated land ice trend is lower than many estimates of GRACE-derived ocean mass change for the same periods. This is due, in part, to a smaller estimate for glacier and ice cap mass trends compared to previous assessments. We discuss this, and other likely reasons, for the difference between GRACE ocean mass and land ice trends.
    Keywords: DATE/TIME; Mass balance; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 250 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-13
    Keywords: pan-Antarctica
    Type: Dataset
    Format: application/zip, 15.8 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-13
    Keywords: pan-Antarctica
    Type: Dataset
    Format: application/zip, 5.8 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-12
    Keywords: LATITUDE; Line; LONGITUDE; pan-Antarctica
    Type: Dataset
    Format: text/tab-separated-values, 103038 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-05-12
    Keywords: Area; Glacier accumulation; Glacier discharge; Mass balance; pan-Antarctica; Sector; Standard deviation; Time coverage
    Type: Dataset
    Format: text/tab-separated-values, 322 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-05-12
    Keywords: Glacier discharge; Mass balance; pan-Antarctica; Sector; Standard deviation; Time coverage
    Type: Dataset
    Format: text/tab-separated-values, 80 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-05-12
    Keywords: ANU* corrected GRACE satellite data, CSR-RL04; Area; Area/locality; Event label; Greenland; Greenland_A; Greenland_B; Greenland_C; Greenland_D; Greenland_E; Greenland_F; Greenland_G; Greenland_Ice; ICE-5G* corrected GRACE satellite data, CSR-RL04; ICESat satellite data, ICE-5G corrected; Mass balance; SAT; Satellite remote sensing; Standard deviation; Surface mass balance and ice discharge SMB-D; Time coverage
    Type: Dataset
    Format: text/tab-separated-values, 88 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...