ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G3-00-0162
    Type of Medium: Monograph available for loan
    Pages: 40 S. : Ill., graph. Darst. + 4 Beil.
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Potsdam : Strauss
    Call number: AWI E2-04-0120
    Type of Medium: Monograph available for loan
    Pages: 83 S. : Ill., Kt.
    ISBN: 3929748371
    Language: German
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G3-05-0081
    In: Permafrost and periglacial processes
    Type of Medium: Journal available for loan
    Pages: S. 163 - 172
    Series Statement: Permafrost and periglacial processes 16, 2
    Language: English
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: AWI G3-18-91864(ger) ; AWI G3-18-91864(eng) ; AWI G3-18-91864(rus)
    Type of Medium: Monograph available for loan
    Pages: 3 Bände in einem Schuber (204 Seiten) , Illustrationen, Diagramme, Karten
    ISBN: 978-3-88808-716-5 (ger) , 978-3-88808-714-1 (eng) , 978-3-88808-715-8 (rus)
    Language: German , English , Russian
    Note: Inhalt: Einführung und Hintergrund der terrestrischen Expeditionen in Sibirien / Hans-Wolfgang Hubberten, Dmitry Yu. Bolshiyanov, Mikhail N. Grigoriev, Volker Rachold, Eva-Maria Pfeiffer. - 1. Auf dem Weg zu den Lena-Expeditionen 1993-1997. - Seesedimente auf Taimyr und Sewernaja Semlja als Klima-Archiv / Pier Paul Overduin, Dmitry Yu. Bolshiyanov, Martin Melles. - Erste Studien zu Energie-, Wasser- und Spurengasflüssen in Tundraböden: Labas-See und Lewinson-Lessing-See, Taimyr-Halbinsel / Eva-Maria Pfeiffer, Julia Boike, Mikhail P. Zhurbenko, Dmitry Yu. Bolshiyanov. - Untersuchungen von Permafrost-Sequenzen in der Taimyr-Tiefebene (1994-1996) / Christine Siegert, Alexander Yu. Dereviagin. - Kohlenstoff in den arktischen Wüstenböden von Sewernaja Semlja / Eva-Maria Pfeiffer, Mikhail P. Zhurbenko, Dimitry Yu. Bolshiyanov. - Hydrologie, Geochemie und Sedimenttransport in den Flüssen Sibiriens - Das SYSTEM LAPTEV SEA Projekt 1994-1997 / Volker Rachold. - 2. Der Beginn der Lena-Expeditionen 1998-2002. - lnitiierung des Forschungsprojekts Lenadelta: Wissenschaftliche Strategie, Kooperation und Logistik / Volker Rachold, Martin Antonow, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Eva-Maria Pfeiffer. - Die ersten Jahre der boden- und klimabezogenen Permafrostforschung auf Samoilow und Umgebung (Untersuchungen 1998-2001) / Eva-Maria Pfeiffer, Julia Boike, Günter Stoof, Lars Kutzbach, Mikhail N. Grigoriev, lrina A. Yakshina, Anno N. Kurchatova, Dmitry Yu. Bolshiyanov. - Bykowski-Halbinsel: Die erste Landexpedition mit Fokus auf das Paläoklima / Lutz Schirrmeister, Guido Grosse, Viktor V. Kunitsky, Christine Siegert, Hanno Meyer. - Schiffsexpeditionen von 1998 bis 2002 zur Untersuchung von Erosion und Geomorphologie der Küste mit Dunai, Neptun, Sofron Danilov und Pavel Bashmakov / Volker Rachold, Waldemar Schneider, Mikhail N. Grigoriev, Hans-Wolfgong Hubberten, Felix E. Are, Dmitry Yu. Bolshiyanov. - Untersuchung von Seen auf Arga: Geschichte und Entstehung des Lenadeltas / Georg Schwamborn, Mikhail N. Grigoriev, Volker Rachold, Vladimir E. Tumskoy, Lutz Schirrmeister, Guido Grosse. - Mikrobieller Kohlenstoffumsatz in der Auftauschicht und im Permafrost / Susanne Liebner, Christian Knoblauch, Eva-Maria Pfeiffer, Svetlana Yu. Evgrafova, Dirk Wagner. - Feldarbeit für die Rekonstruktion der Paläoumwelt / Lutz Schirrmeister, Tatyana V. Kuznetsova, Andrei A. Andreev, Frank Kienast, Dmitry Yu. Bolshiyanov. - 3. Prozessstudien zur Permafrostdynamik 2002-2005. - Submarine Permafrostbohrungen während der COAST 2005 Expedition / Volker Rachold, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Waldemar Schneider. - Die frühe Forschungsstation Insel Samoilow und ihre Erweiterung 2005 / Hans-Wolfgang Hubberten, Julia Boike, Eva-Maria Pfeiffer, Günter Stoof, Alexander Yu. Gukav. - Installation des Samoilow Observatoriums - wissenschaftliches Monitoring von Klimadaten, Permafrostböden und Treibhausgasen (Untersuchungen 2002-2006) / Lars Kutzbach, Christian Wille, Torsten Sachs, David Holl, Günter Stoof Julia Boike, Mikhail N. Grigoriev, Eva-Maria Pfeiffer. - Mikrobieller Stickstoffumsatz in der Auftauschicht und den tieferen Permafrostsedimenten des Lenadeltas / Claudia Fiencke, Tina Sanders, Fabian Beermann, Elena E. Lebedeva, Eva-Maria Pfeiffer. - Geokryologische und paläoökologische Studien an den Küsten der Laptewsee / Lutz Schirrmeister, Christine Siegert, Guido Grosse, Hanno Meyer, Mikhail N. Grigoriev, Viktor V. Kunitsky. - Langzeitbeobachtungen der pelagischen Fauna in Seen und Tümpeln des Lenadeltas / Ekaterina N. Abramova, lrina I. Vishnyakova, Grigory A. Soloviev, Anna A. Abramova. - 4. Umsetzung neuer Forschungsthemen 2007-2012. - Die Dynamik der arktischen Küsten / Frank Günther, Mikhail N. Grigoriev, P. Paul Overduin, Hugues Lantuit, Hans-Wolfgang Hubberten. - Feldarbeit und Erstellung numerischer Modelle von submarinem Permafrost und Gashydraten / Hans-Wolfgang Hubberten, Pier Paul Overduin, Sebastian Wetterich, Mikhail N. Grigoriev. - Permafrostdegradation, Thermokarst und Thermoerosion - Feldforschung auf der Insel Kurungnach / Anne Morgenstern, lrina V Fedorova, Antonina A. Chetverova, Frank Günther, Mathias Ulrich, Fabian Beermann, Sebastian Zubrzycki, Sofia A. Antonova, Samuel Stettner, Julia Boike. - Mit Kettensäge zum Klimamodell - Eiskeile als Winterklima-Archive / Hanno Meyer, Thomas Opel, Alexander Yu. Dereviagin. - Veränderungen nordsibirischer Seen und Baumgrenzen in der Vergangenheit und Gegenwart als Reaktion auf Erwärmung / Ulrike Herzschuh, Luidmila A. Pestryakova, Laura S. Epp, Larisa A. Frolova, Ruslan M. Gorodnichev, Birgit Heim, Florion Jeltsch, Juliane Klemm, Stefan Kruse, Larisa B. Nazarova, Bastian Niemeyer, Anatolii N. Nikolaev, Kathleen R. Stoof-Leichsenring, Ralph Tiedemann, Mareike Wieczoreck, Evgenij S. Zakharov, Heike H. Zimmermann. - Kohlenstoff in Permafrost - Quantifizierung der Menge an organischem Material in Sibirien / Jens Strauss, Lutz Schirrmeister, Sebastian Zubrzycki, Alexander L. Kholodov, Mikhail N. Grigoriev, Viktor V. Kunitsky, Matthias Fuchs, Eva-Maria Pfeiffer, Guido Grosse. - Expeditionen mit Gummibooten und kleinen Flussbooten - Hydrologie und Geomorphologie des Lenadeltas / Dmitry Yu. Bolshiyanov, lrina V Fedorova, Julia Boike. - Mobilisierung und Ablagerung von Kohlenstoff im Lena-Flusssystem / Gesine Mollenhauer, Maria Winterfeld, Boris P. Koch, lrina V. Fedorova. - Holozäne Seen rund um das Lenadelta / Bernhard Diekmann, Boris Biskaborn, Luidmila A. Pestryakova, Dmitry A. Subetto, Dmitry Yu. Bolshiyanov, Ulrike Herzschuh, Georg Schwamborn, Volker Rachold. - Logistisch komplexe Einsätze - Beobachtungen von Energie und Treibhausgasflüssen aus der Luft mittels Helipod / Torsten Sachs, Eric Larmanau, Katrin Kohnert, Andrei Serafimavich. - Lena Expeditionen: Einbindung neuer deutscher Forschungsgruppen / Birgit Heim, Hans-Wolfgang Hubberten, Pier Paul Overduin, lrina V. Fedorova. - Ein Jahrzehnt der Küstenforschung im Lenadelta / lngeborg Bussmann, Dmitry Yu. Bolshiyanov, lrina V Fedorova, Mikhail N. Grigoriev, Alexander Yu. Gukov, Gerhard Kattner, Alexandra Kraberg, Denis V. Moiseev, Pier Paul Overduin, Lasse Sander, Karen H. Wiltshire. - 5. Neue Horizonte für Lena-Expeditionen - Die neue Forschungsstation Insel Samoilow. - Ministerpräsident W. W. Putin besucht die Insel Samoilow (P-Day) / Hanno Meyer, Thomas Opel, Alexander Yu. Dereviagin, Svetlana Yu. Evgrafava, Waldemar Schneider, Alexander S. Makarov, Mikhail N. Grigoriev. - Die neue Forschungsstation Insel Samoilow: Bau, Eröffnungsfeier, Anlage und Betrieb / Mikhail N. Grigoriev, Hans-Wolfgang Hubberten, Igor N. Yeltsov, Anne Morgenstern. - Samoilow in internationalen Programmen und Netzwerken - FLUXNET, GTN-P, INTERACT / Anne Morgenstern, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Julia Boike, Lars Kutzbach. - Kurzer Überblick über die russisch-deutschen Permafrost-Projekte CARBOPERM und KoPf / Eva-Maria Pfeiffer, Hans-Wolfgang Hubberten, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Sebastian Zubrzycki, Ulrike Herzschuh, Guido Grosse. - Einsatz von Fernerkundung im Gebiet der Laptewsee / Guido Grosse, Birgit Heim, Sofia Antonova, Julia Boike, Astrid Bracher, Alexey N. Fague, Frank Günther, Thomas Krumpen, Moritz Langer, Anne Morgenstern, Sina Muster, lngmar Nitze, Torsten Sachs. - Multidisziplinäre Studien auf Samoilow und Kurungnach: Geophysik, Fernerkundung, Geologie sowie botanische und Bodenstudien / Igor N. Yeltsov, Alexey N. Faguet, Leonid V. Tsibizov, Vladimir A. Kashirtsev, Vladimir V. Olenchenko, Andrey A. Kartozia, Nikolay N. Lashchinskiy. - Terrestrische Permafrost-Bohrkampagnen: Tiefe Einblicke in die Vergangenheit / Jens Strauss, Mikhail N. Grigoriev, Paul Overduin, Georgii Maximov, Guido Grosse, Alexey N. Fague, Leonid Tsibizov, Lutz Schirrmeister. - Langzeitmessungen der Energie-, Wasser-, und Treibhausgasflüsse zwischen Land und Atmosphäre von 2002 bis heute und darüber hinaus / David Holl, Ju , Contents: Introduction and Background to Terrestrial Expeditions in Siberia / Hans-Wolfgang Hubberten, Dmitry Yu. Bolshiyanov, Mikhail N. Grigoriev, Volker Rachold, Eva-Maria Pfeiffer. - 1. On the Way to the Lena Expeditions 1993-1997. - Lake Sediments on Taymyr and Severnaya Zemlya as a Climate Archive / Pier Paul Overduin, Dmitry Yu. Bolshiyanov, Martin Melles. - First Energy, Water, and Flux Studies of Tundra Soils - Labaz and Levinson-Lessing Lake, Taymyr Peninsula / Eva-Maria Pfeiffer, Julia Boike, Mikhail P. Zhurbenko, Dmitry Yu. Bolshiyanov. - Exploring Permafrost Sequences in the Taymyr Lowland (1994-1996) / Christine Siegert, Alexander Yu. Dereviagin. - Carbon in Arctic Desert Soils of Severnaya Zemlya / Eva-Maria Pfeiffer, Mikhail P. Zhurbenko, Dimitry Yu. Bolshiyanov. - Hydrology, Geochemistry, and Sediment Transport of the Siberian Rivers - The SYSTEM LAPTEV SEA Project 1994-1997 / Volker Rachold. - 2. The Beginning of the Lena Expeditions 1998-2002. - Initiation of the Research Project Lena Delta: Science Strategy, Cooperation, and Logistics / Volker Rachold, Martin Antonow, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Eva-Maria Pfeiffer. - The First Years of Soil and Climate-Related Permafrost Research on Samoylov Island and Surroundings (Investigations 1998- 2001) / Eva-Maria Pfeiffer, Julia Boike, Günter Stoof, Lars Kutzbach, Mikhail N. Grigoriev, lrina A. Yakshina, Anno N. Kurchatova, Dmitry Yu. Bolshiyanov. - Bykovsky Peninsula: The First Land Expedition with a Focus on Paleoclimate / Lutz Schirrmeister, Guido Grosse, Viktor V. Kunitsky, Christine Siegert, Hanno Meyer. - The 1998-2002 Ship-Based Expeditions for Coastal Erosion and Geomorphological Studies with Dunay, Neptun, Sofron Danilov, and Pavel Bashmakov / Volker Rachold, Waldemar Schneider, Mikhail N. Grigoriev, Hans-Wolfgang Hubberten, Felix E. Are, Dmitry Yu. Bolshiyanov. - Lake Studies on Arga: History and Formation of the Lena Delta / Georg Schwamborn, Mikhail N. Grigoriev, Volker Rachold, Vladimir E. Tumskoy, Lutz Schirrmeister, Guido Grosse. - Microbial Carbon Turnover in the Active Layer and in Permafrost / Susanne Liebner, Christian Knoblauch, Eva-Maria Pfeiffer, Svetlana Yu. Evgrajova, Dirk Wagner. - Fieldwork for Reconstructing the Paleo-Environment / Lutz Schirrmeister, Tatyana V. Kuznetsova, Andrei A. Andreev, Frank Kienast, Dmitry Yu. Bolshiyanov. - 3. Process Studies of Permafrost Dynamics 2002-2006. - Subsea Permafrost Drilling During the COAST 2005 Expedition / Volker Rachold, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Waldemar Schneider. - The Early Samoylov Station and Its Extension in 2005 / Hans-Wolfgang Hubberten, Julia Boike, Eva-Maria Pfeiffer, Günter Stoof, Alexander Yu. Gukov. - Installation of the Samoylov Observatory - Permafrost-Affected Soils and Greenhouse Gases (Investigations 2002-2006) / Lars Kutzbach, Christian Wille, Torsten Sachs, David Holl, Günter Stoof, Julia Boike, Mikhail N. Grigoriev, Eva-Maria Pfeiffer. - Microbial Nitrogen Turnover in the Active Layer and Deeper Permafrost Sediments of the Lena River Delta / Claudia Fiencke, Tina Sanders, Fabian Beermann, Elena E. Lebedeva, Eva-Maria Pfeiffer. - Geocryological and Paleoenvironmental Studies on the Coasts of the Laptev Sea / Lutz Schirrmeister, Christine Siegert, Guido Grosse, Hanno Meyer, Mikhail N. Grigoriev, Viktor V. Kunitsky. - Long-Term Observations of the Pelagic Fauna in Lakes and Ponds in the Lena Delta / Ekaterina N. Abramova, lrina I. Vishnyakova, Grigory A. Soloviev, Anna A. Abramova. - 4. Implementation of New Research Topics 2007-2012. - Arctic Coastal Dynamics / Frank Günther, Mikhail N. Grigoriev, Pier Paul Overduin, Hugues Lantuit, Hans-Wolfgang Hubberten. - Field Work and Numerical Modelling for Subsea Permafrost and Gas Hydrates / Hans-Wolfgang Hubberten, Pier Paul Overduin, Sebastian Wetterich, Mikhail N. Grigoriev. - Permafrost Degradation, Thermokarst and Thermal Erosion Fieldwork on Kurungnakh Island / Anne Morgenstern, Irina V. Fedorova, Antonina A. Chetverova, Frank Günther, Mathias Ulrich, Fabian Beermann, Sebastian Zubrzycki, Sofia A. Antonova, Samuel Stettner, Julia Boike. - With the Chainsaw to Climate Modelling - Ice Wedges as a Winter Climate Archive / Hanno Meyer, Thomas Opel, Alexander Yu. Dereviagin. - Past and Present Treeline and Lake Changes in Northern Siberia in Response to Warming / Ulrike Herzschuh, Luidmila A. Pestryakova, Laura S. Epp, Larisa A. Frolova, Ruslan M. Gorodnichev, Birgit Heim, Florion Jeltsch, Juliane Klemm, Stefan Kruse, Larisa B. Nazarova, Bastian Niemeyer, Anatolii N. Nikolaev, Kathleen R. Stoof-Leichsenring, Ralph Tiedemann, Mareike Wieczoreck, Evgenij S. Zakharov, Heike H. Zimmermann. - Organic Matter Matters- Quantifying the Amount of Carbon in Northern Siberia / Jens Strauss, Lutz Schirrmeister, Sebastian Zubrzycki, Alexander L. Kholodov, Mikhail N. Grigoriev, Viktor V. Kunitsky, Matthias Fuchs, Eva-Maria Pfeiffer, Guido Grosse. - Expeditions with Rubber Boats and Small River Vessels - Hydrology and Geomorphology of the Lena Delta / Dmitry Yu. Bolshiyanov, lrina V Fedorova, Julia Boike. - Mobilization and Deposition of Carbon in the Lena River System / Gesine Mollenhauer, Maria Winterfeld, Boris P. Koch, lrina V. Fedorova. - Holocene Lakes Around the Lena Delta / Bernhard Diekmann, Boris Biskaborn, Luidmila A. Pestryakova, Dmitry A. Subetto, Dmitry Yu. Bolshiyanov, Ulrike Herzschuh, Georg Schwamborn, Volker Rachold. - Complex Logistical Operations - Airborne Energy and Greenhouse Gas Flux Observations by Helipod / Torsten Sachs, Eric Larmanau, Katrin Kohnert, Andrei Serafimavich. - Lena Expeditions: Integration of New German Research Groups / Birgit Heim, Hans-Wolfgang Hubberten, Pier Paul Overduin, lrina V. Fedorova. - A Decade of Coastal Research in the Lena Delta / lngeborg Bussmann, Dmitry Yu. Bolshiyanov, lrina V Fedorova, Mikhail N. Grigoriev, Alexander Yu. Gukov, Gerhard Kattner, Alexandra Kraberg, Denis V. Moiseev, Pier Paul Overduin, Lasse Sander, Karen H. Wiltshire. - 5. New Horizons for Lena Expeditions - The New Research Station Samoylov Island. - Prime Minister V. V. Putin Visits Samoylov Island (P-Day) / Hanno Meyer, Thomas Opel, Alexander Yu. Dereviagin, Svetlana Yu. Evgrafava, Waldemar Schneider, Alexander S. Makarov, Mikhail N. Grigoriev. - The New Research Station Samoylov Island: Construction, Opening Ceremony, Facilities, and Operation / Mikhail N. Grigoriev, Hans-Wolfgang Hubberten, Igor N. Yeltsov, Anne Morgenstern. - Samoylov in International Programs and Networks - FLUX NET, GTN-P, INTERACT / Anne Morgenstern, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Julia Boike, Lars Kutzbach. - Short Overview of the Russian-German Permafrost Projects CARBOPERM and KoPf / Eva-Maria Pfeiffer, Hans-Wolfgang Hubberten, Mikhail N. Grigoriev, Dmitry Yu. Bolshiyanov, Sebastian Zubrzycki, Ulrike Herzschuh, Guido Grosse. - Application of Remote Sensing in the Laptev Sea Region / Guido Grosse, Birgit Heim, Sofia Antonova, Julia Boike, Astrid Bracher, Alexey N. Fague, Frank Günther, Thomas Krumpen, Moritz Langer, Anne Morgenstern, Sina Muster, lngmar Nitze, Torsten Sachs. - Multidisciplinary Studies on Samoylov and Kurungnakh: Geophysics, Remote Sensing, Geology, Botanical, and Soil Studies / Igor N. Yeltsov, Alexey N. Faguet, Leonid V. Tsibizov, Vladimir A. Kashirtsev, Vladimir V. Olenchenko, Andrey A. Kartozia, Nikolay N. Lashchinskiy. - Deep lnsights into the Past Terrestrial Permafrost Drilling Campaigns / Jens Strauss, Mikhail N. Grigoriev, Paul Overduin, Georgii Maximov, Guido Grosse, Alexey N. Fague, Leonid Tsibizov, Lutz Schirrmeister. - Long-Term Measurements of Land-Atmosphere Fluxes of Energy, Water, and Greenhouse Gases from 2002 until Today and Beyond / David Holl, Julia Boike, Torsten Sachs, Peter Schreiber, Niko Bornemann, Christian Wille, Eva-Maria Pfeiffer, Irina V. Fedorova, Lars Kutzbach. - Carbon Turnover of Thawing Permafrost in the Lena Delta / , Russische Ausgabe in kyrillischer Schrift
    Location: AWI Reading room
    Location: AWI Reading room
    Location: AWI Reading room
    Branch Library: AWI Library
    Branch Library: AWI Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI G3-22-94687
    Description / Table of Contents: Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the ...
    Type of Medium: Dissertations
    Pages: xxiv, 134 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2021 , Table of Contents Abstract Zusammenfassung List of Figures List of Tables Abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost and climate change 1.1.2 Permafrost thaw and disturbances 1.1.3 Abrupt permafrost disturbances 1.1.4 Remote sensing 1.1.5 Remote sensing of permafrost disturbances 1.2 Aims and objectives 1.3 Study area 1.4 General data and methods 1.4.1 Landsat and Sentinel-2 1.4.2 Google Earth Engine 1.5 Thesis structure 1.6 Overview of publications and authors’ contribution 1.6.1 Chapter 2 - Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 1.6.2 Chapter 3 - Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 1.6.3 Chapter 4 - Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 2 Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Sites 2.3.2 Data 2.3.3 Data Processing 2.3.3.1 Filtering Image Collections 2.3.3.2 Creating L8, S2, and Site Masks 2.3.3.3 Preparing Sentinel-2 Surface Reflectance Images in SNAP 2.3.3.4 Applying Site Masks 2.3.4 Spectral Band Comparison and Adjustment 2.4 Results 2.4.1 Spectral Band Comparison 2.4.2 Spectral Band Adjustment 2.4.3 ES and HLS Spectral Band Adjustment 2.5 Discussion 2.6 Conclusions 2.7 Acknowledgements 2.8 Appendix Chapter 2 3 Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Materials and Methods 3.3.1 Study Sites 3.3.2 Data 3.3.3 Data Processing and Mosaicking Workflow 3.3.4 Data Availability Assessment 3.3.5 Mosaic Coverage and Quality Assessment 3.4 Results 3.4.1 Data Availability Assessment 3.4.2 Mosaic Coverage and Quality Assessment 3.5 Discussion 3.6 Conclusions 4 Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 4.1 Abstract 4.2 Introduction 4.3 Study Area and Methods 4.3.1 Study area 4.3.2 General workflow and ground truth data 4.3.3 Data and LandTrendr 4.3.4 Index selection 4.3.5 Temporal Segmentation 4.3.6 Spectral Filtering 4.3.7 Spatial masking and filtering 4.3.8 Machine-learning object filter 4.4 Results 4.4.1 Focus sites 4.4.2 North Siberia 4.5 Discussion 4.5.1 Mapping of RTS 4.5.2 Spatio-temporal variability of RTS dynamics 4.5.3 LT-LS2 capabilities and limitations 4.6 Conclusion 4.7 Appendix 5 Synthesis and Discussion 5.1 Google Earth Engine 5.2 Landsat and Sentinel-2 5.3 Image mosaics and disturbance detection algorithm 5.4 Mapping RTS and their annual temporal dynamics 5.5 Limitations and technical considerations 5.6 Key findings 5.7 Outlook References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI G3-23-95073
    Description / Table of Contents: The Arctic is changing rapidly and permafrost is thawing. Especially ice-rich permafrost, such as the late Pleistocene Yedoma, is vulnerable to rapid and deep thaw processes such as surface subsidence after the melting of ground ice. Due to permafrost thaw, the permafrost carbon pool is becoming increasingly accessible to microbes, leading to increased greenhouse gas emissions, which enhances the climate warming. The assessment of the molecular structure and biodegradability of permafrost organic matter (OM) is highly needed. My research revolves around the question “how does permafrost thaw affect its OM storage?” More specifically, I assessed (1) how molecular biomarkers can be applied to characterize permafrost OM, (2) greenhouse gas production rates from thawing permafrost, and (3) the quality of OM of frozen and (previously) thawed sediments. I studied deep (max. 55 m) Yedoma and thawed Yedoma permafrost sediments from Yakutia (Sakha Republic). I analyzed sediment cores taken below thermokarst lakes on the Bykovsky Peninsula (southeast of the Lena Delta) and in the Yukechi Alas (Central Yakutia), and headwall samples from the permafrost cliff Sobo-Sise (Lena Delta) and the retrogressive thaw slump Batagay (Yana Uplands). I measured biomarker concentrations of all sediment samples. Furthermore, I carried out incubation experiments to quantify greenhouse gas production in thawing permafrost. I showed that the biomarker proxies are useful to assess the source of the OM and to distinguish between OM derived from terrestrial higher plants, aquatic plants and microbial activity. In addition, I showed that some proxies help to assess the degree of degradation of permafrost OM, especially when combined with sedimentological data in a multi-proxy approach. The OM of Yedoma is generally better preserved than that of thawed Yedoma sediments. The greenhouse gas production was highest in the permafrost sediments that thawed for the first time, meaning that the frozen Yedoma sediments contained most labile OM. Furthermore, I showed that the methanogenic communities had established in the recently thawed sediments, but not yet in the still-frozen sediments. My research provided the first molecular biomarker distributions and organic carbon turnover data as well as insights in the state and processes in deep frozen and thawed Yedoma sediments. These findings show the relevance of studying OM in deep permafrost sediments.
    Type of Medium: Dissertations
    Pages: xxiii, 178 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Table of Contents Abstract Zusammenfassung Samenvatting Acknowledgements List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Aims and research questions 1.3 Scientific background 1.3.1 The Arctic in a changing climate 1.3.2 Northern Hemisphere permafrost region 1.3.3 Permafrost degradation 1.3.3.1 Thermokarst development 1.3.3.2 Retrogressive thaw slumps 1.3.4 Organic matter in permafrost deposits 1.4 Material and methods 1.4.1 Study sites 1.4.2 Main laboratory methods 1.5 Thesis structure 1.6 Overview of publications 1.6.1 Publication “n-Alkane Characteristics of Thawed Permafrost Deposits Below a Thermokarst Lake on Bykovsky Peninsula, Northeastern Siberia” 1.6.2 Publication “Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia” 1.6.3 Publication “Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)” 1.6.4 Publication “Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods” 1.6.5 Contributions to complementary research 2 Bykovsky Peninsula 2.1 Abstract 2.2 Introduction 2.3 Study area 2.4 Material and methods 2.4.1 Field work 2.4.2 Laboratory analyses 2.4.2.1 Biomarker analysis 2.4.2.2 Biomarker indices 2.5 Results 2.5.1 Bulk sediment 2.5.1.1 Long core PG2412 2.5.1.2 Short core PG2420 2.5.2 Hydrochemistry 2.5.3 n-Alkane distributions 2.6 Discussion 2.6.1 Depositional history at the study site 2.6.1.1 Unit I - Early Weichselian fluvial sedimentation 2.6.1.2 Unit II – Yedoma deposition in wetland landscapes dominated by low-centered polygons 2.6.1.3 Unit III/Unit A – Yedoma deposition under cold-dry conditions during the Late Weichselian 2.6.1.4 Unit IV/Unit B – Holocene thermokarst lake formation and lacustrine sedimentation 2.6.2 Organic matter degradation 2.7 Conclusion 2.8 Acknowledgements 3 Yukechi Alas 3.1 Abstract 3.2 Introduction 3.3 Methods and materials 3.3.1 Study area 3.3.2 Field work 3.3.3 Laboratory analyses 3.3.3.1 Organic carbon content 3.3.3.2 Lipid biomarkers 3.3.4 Incubations 3.3.5 Statistical analysis 3.4 Results 3.4.1 Organic matter characteristics 3.4.1.1 Alas lake sediment core YU-L7 3.4.1.2 Yedoma lake sediment core YU-L15 3.4.2 Greenhouse gas production 3.4.2.1 Alas lake sediment core YU-L7 3.4.2.2 Yedoma lake sediment core YU-L15 3.4.2.3 Carbon mineralization 3.4.3 Statistical correlation and regression 3.5 Discussion 3.5.1 Organic matter degradation potential 3.5.1.1 Organic carbon quantity 3.5.1.2 Organic matter preservation and talik formation 3.5.1.3 Presence of methanogenic communities 3.5.2 Greenhouse gas production 3.5.2.1 Carbon dioxide production 3.5.2.2 Methane production 3.5.3 GHG links with other parameters and outlook 3.6 Conclusion 3.7 Acknowledgements 4 Sobo-Sise cliff 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Methods 4.4.1 Fieldwork 4.4.2 Sedimentological organic matter parameters 4.4.3 Lipid biomarkers 4.4.3.1 Extraction and fraction separation 4.4.3.2 GC-MS measurements and compound quantification 4.4.4 Biomarker indices 4.4.4.1 Average Chain Length 4.4.4.2 Carbon Preference Index 4.4.4.3 Higher Plant Fatty Acids 4.4.5 Data analysis 4.5 Results 4.5.1 Sedimentological organic matter parameters 4.5.2 Biomarkers 4.5.2.1 n-Alkanes 4.5.2.2 Fatty acids 4.5.3 Clustering 4.6 Discussion 4.6.1 Terrestrial depositional environment 4.6.1.1 Organic matter source 4.6.1.2 Organic matter quality 4.6.2 Implications and outlook 4.7 Conclusion 4.8 Acknowledgements 5 Batagay thaw slump 5.1 Abstract 5.2 Introduction 5.3 Study site 5.4 Methods 5.4.1 Sample collection 5.4.2 Laboratory analyses 5.5 Results 5.5.1 Detected biomolecules 5.5.2 Lower Ice Complex 5.5.3 Lower Sand Unit 5.5.4 Woody Layer 5.5.5 Upper Ice Complex - Yedoma 5.5.6 Holocene Cover 5.6 Discussion 5.6.1 Biogeochemical legacy of glacial periods 5.6.2 Biogeochemical legacy of interglacial periods 5.6.3 Modern organic matter mobilization in the Batagay megaslump 5.7 Conclusion 5.8 Acknowledgements 6 Synthesis 6.1 Lipid biomarkers to characterize permafrost organic matter 6.1.1 Organic matter source 6.1.2 Organic matter quality 6.2 Mobilization of organic matter in thawing permafrost 6.2.1 Methane production vs. emission 6.2.2 Using the data in models 6.2.3 Transport of OM into aquatic systems 6.3 Recommendations for future research References Appendix A Supporting information for Chapter 2 Appendix B Supporting information for Chapter 3 Appendix C Supporting information for Chapter 4 Appendix D Supporting information for Chapter 5
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G8-20-93468
    Type of Medium: Dissertations
    Pages: XIII, 151, A28 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Table of contents Abstract Zusammenfassung Abbreviations and Nomenclature 1. Introduction 1.1 Scientific Background 1.1.1 Climate and Permafrost 1.1.2 Remote Sensing 1.1.3 Research Questions 1.2 General Approach 1.3 Thesis Structure 1.4 Author’ s contributions 1.4.1 Chapter 2 1.4.2 Chapter 3 1.4.3 Chapter 4 1.4.4 Chapter 5 1.4.5 Appendix Paper 1 2. Detection of landscape dynamics in the Arctic Lena Delta withtemporally dense Landsat time-series Stacks 2.1 Abstract 2.2 Introduction 2.3 Study Area and Data 2.3.1 Study Area 2.3.2 Data 2.3.3 Methods/processing 2.4 Results 2.4.1 Regional Scale changes 2.4.2 Local scale changes 2.5 Discussion 2.5.1 Regional scale changes 2.5.2 Local scale changes 2.5.3 Data quality 2.5.4 Data usage and outlook 2.6 Conclusion 2.7 Data Archive 2.8 Acknowledgements 2.9 Appendix A. Supplementary Data 3. Landsat-Based Trend Analysis of Lake Dynamics across NorthernPermafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Study Sites 3.3.1 Alaska North Slope (NSL) 3.3.2 Alaska Kobuk-Selawik Lowlands (AKS) 3.3.3 Central Yakutia (CYA) 3.3.4 Kolyma Lowland (KOL) 3.4 Data and Methods 3.4.1 Data and Trend Analysis 3.4.2 Pixel-Based Machine-Leaming Classification 3.4.3 Object-Based Image Analysis 3.4.4 Data Quality and Post-Processing 3.4.5 Calculation of Lake Change Statistics 3.5 Results 3.5.1 NSL (Alaska North Slope) 3.5.2 AKS (Alaska Kobuk-Selawik Lowlands) 3.5.3 CYA (Central Yakutia) 3.5.4 KOL (Kolyma Lowland) 3.6 Discussion 3.6.1 Data Analysis 3.6.2 Comparison of Sites and Prior Studies 3.7 Conclusions 3.8 Supplementary Materials 3.9 Acknowledgements 3.10 Appendix A 4. Remotely sensing recent permafrost region disturbances across Arcticto Subarctic transects 4.1 Abstract 4.2 Introduction 4.3 Results 4.3.1 Lakes 4.3.2 Retrogressive Thaw Slumps 4.3.3 Wildfire 4.4 Discussion 4.5 Methods 4.5.1 Remote Sensing Data Processing 4.5.2 Auxiliary Data Sources 5. Tundra landform and Vegetation productivity trend maps for theArctic Coastal Plain of northern Alaska 5.1 Abstract 5.2 Background & Summary 5.3 Methods 5.3.1 Polygonal tundra geomorphology mapping 5.3.2 Image processing 5.3.3 Image Classification 5.3.4 Decadal scale NDVI trend analysis 5.4 Data Records 5.5 Technical Validation 5.5.1 Tundra Geomorphology Map 5.5.2 NDVI Trend Map 5.6 Data Citation 6. Discussion/Synthesis 6.1 Landsat-based trend analysis 6.1.1 Spatial Scale 6.1.2 Time series analysis 6.1.3 Model complexity 6.2 Mapping of permafrost landscape dynamics 6.2.1 Lake dynamics 6.2.2 Wildfire 6.2.3 Retrogressive Thaw Slumps 6.3 Pan-arctic scale distribution and consequences of changes inpermafrost 6.4 Outlook Bibliography A-1. Appendix: Reduced arctic tundra productivity linked with landform and climate change interactions A-1.1 Abstract A-1.2 Introduction A-1.3 Methods A-1.4 Results A-1.5 Discussion Danksagung/Acknowledgements Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: AWI Bio-22-94840
    Description / Table of Contents: Vegetation change at high latitudes is one of the central issues nowadays with respect to ongoing climate changes and triggered potential feedback. At high latitude ecosystems, the expected changes include boreal treeline advance, compositional, phenological, physiological (plants), biomass (phytomass) and productivity changes. However, the rate and the extent of the changes under climate change are yet poorly understood and projections are necessary for effective adaptive strategies and forehanded minimisation of the possible negative feedbacks. The vegetation itself and environmental conditions, which are playing a great role in its development and distribution are diverse throughout the Subarctic to the Arctic. Among the least investigated areas is central Chukotka in North-Eastern Siberia, Russia. Chukotka has mountainous terrain and a wide variety of vegetation types on the gradient from treeless tundra to northern taiga forests. The treeline there in contrast to subarctic North America and north-western and central Siberia is represented by a deciduous conifer, Larix cajanderi Mayr. The vegetation varies from prostrate lichen Dryas octopetala L. tundra to open graminoid (hummock and non-hummock) tundra to tall Pinus pumila (Pall.) Regel shrublands to sparse and dense larch forests. Hence, this thesis presents investigations on recent compositional and above-ground biomass (AGB) changes, as well as potential future changes in AGB in central Chukotka. The aim is to assess how tundra-taiga vegetation develops under changing climate conditions particularly in Fareast Russia, central Chukotka. Therefore, three main research questions were considered: 1) What changes in vegetation composition have recently occurred in central Chukotka? 2) How have the above-ground biomass AGB rates and distribution changed in central Chukotka? 3) What are the spatial dynamics and rates of tree AGB change in the upcoming millennia in the northern tundra-taiga of central Chukotka? Remote sensing provides information on the spatial and temporal variability of vegetation. I used Landsat satellite data together with field data (foliage projective cover and AGB) from two expeditions in 2016 and 2018 to Chukotka to upscale vegetation types and AGB for the study area. More specifically, I used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI) and Normalised Difference Snow Index (NDSI)) and constrained ordination (Redundancy analysis, RDA) for further k-means-based land-cover classification and general additive model (GAM)-based AGB maps for 2000/2001/2002 and 2016/2017. I also used Tandem-X DEM data for a topographical correction of the Landsat satellite data and to derive slope, aspect, and Topographical Wetness Index (TWI) data for forecasting AGB. Firstly, in 2016, taxa-specific projective cover data were collected during a Russian-German expedition. I processed the field data and coupled them with Landsat spectral Indices in the RDA model that was used for k-means classification. I could establish four meaningful land-cover classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra and (4) prostrate herb tundra and barren areas, and accordingly, I produced the land cover maps for 2000/2001/2002 and 2016/20017. Changes in land-cover classes between the beginning of the century (2000/2001/2002) and the present time (2016/2017) were estimated and interpreted as recent compositional changes in central Chukotka. The transition from graminoid tundra to forest tundra and shrub tundra was interpreted as shrubification and amounts to a 20% area increase in the tundra-taiga zone and 40% area increase in the northern taiga. Major contributors of shrubification are alder, dwarf birch and some species of the heather family. Land-cover change from the forest tundra and shrub tundra class to the larch closed-canopy forest class is interpreted as tree infilling and is notable in the northern taiga. We find almost no land-cover changes in the present treeless tundra. Secondly, total AGB state and change were investigated for the same areas. In addition to the total vegetation AGB, I provided estimations for the different taxa present at the field sites. As an outcome, AGB in the study region of central Chukotka ranged from 0 kg m-2 at barren areas to 16 kg m-2 in closed-canopy forests with the larch trees contributing the highest. A comparison of changes in AGB within the investigated period from 2000 to 2016 shows that the greatest changes (up to 1.25 kg m 2 yr 1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB within the 15 years from 2002 to 2017. In the third manuscript, potential future AGB changes were estimated based on the results of simulations of the individual-based spatially explicit vegetation model LAVESI using different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5 with or without cooling after 2300 CE. LAVESI-based AGB was simulated for the current state until 3000 CE for the northern tundra-taiga study area for larch species because we expect the most notable changes to occur will be associated with forest expansion in the treeline ecotone. The spatial distribution and current state of tree AGB was validated against AGB field data, AGB extracted from Landsat satellite data and a high spatial resolution image with distinctive trees visible. The simulation results are indicating differences in tree AGB dynamics plot wise, depending on the distance to the current treeline. The simulated tree AGB dynamics are in concordance with fundamental ecological (emigrational and successional) processes: tree stand formation in simulated results starts with seed dispersion, tree stand establishment, tree stand densification and episodic thinning. Our results suggest mostly densification of existing tree stands in the study region within the current century in the study region and a lagged forest expansion (up to 39% of total area in the RCP 8.5) under all considered climate scenarios without cooling in different local areas depending on the closeness to the current treeline. In scenarios with cooling air temperature after 2300 CE, forests stopped expanding at 2300 CE (up to 10%, RCP 8.5) and then gradually retreated to their pre-21st century position. The average tree AGB rates of increase are the strongest in the first 300 years of the 21st century. The rates depend on the RCP scenario, where the highest are as expected under RCP 8.5. Overall, this interdisciplinary thesis shows a successful integration of field data, satellite data and modelling for tracking recent and predicting future vegetation changes in mountainous subarctic regions. The obtained results are unique for the focus area in central Chukotka and overall, for mountainous high latitude ecosystems.
    Type of Medium: Dissertations
    Pages: 149 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Potsdam, Universität Potsdam, 2022 , Contents Abstract Zusammenfassung Contents Abbreviations Motivation 1 Introduction 1.1 Scientific background 1.2 Study region 1.3 Aims and objectives 2 Materials and methods 3.1 Section 4 - Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 3.2 Section 5 - Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing 3.3 Section 6 - Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI 4 Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 Abstract 1 Introduction 2 Materials and methods 2.1 Field data collection and processing 2.2 Landsat data, pre-processing and spectral indices processing 2.3 Redundancy analysis (RDA) and classification approaches 3 Results 3.1 General characteristics of the vegetation field data 3.2 Relating field data to Landsat spectral indices in the RDA model 3.3 Land-cover classification 3.4 Land-cover change between 2000 and 2017 4 Discussion 4.1 Dataset limitations and optimisation 4.2 Vegetation changes from 2000/2001/2002 to 2016/2017 Conclusions Acknowledgements Data availability statement References Appendix A. Detailed description of Landsat acquisitions Appendix B. MODIS NDVI time series from 2000 to 2018 Appendix C. Landsat Indices values for each analysed vegetation site Appendix D. Fuzzy c-means classification for interpretation of uncertainties for land-cover mapping Appendix E. Validation of land-cover maps Appendix F. K-means classification results Appendix G. Heterogeneity of natural landscapes and mixed pixels of satellite data Appendix H. Distribution of land-cover classes and their changes by study area 5 Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing Abstract 1 Introduction 2 Materials and methods 2.1 Study region and field surveys 2.2 Above-ground biomass upscaling and change derivation 3 Results 3.1 Vegetation composition and above-ground biomass 3.2 Upscaling above-ground biomass using GAM 3.3 Change of above-ground biomass between 2000 and 2017 in the four focus areas 4 Discussion 4.1 Recent state of above-ground biomass at the field sites 4.2 Recent state of above-ground biomass upscaled for central Chukotka 4.3 Change in above-ground biomass within the investigated 15–16 years in central Chukotka 5 Conclusions Data availability statement Author contributions Competing interests Acknowledgements References Appendix A. Sampling and above-ground biomass (AGB) calculation protocol for field data 6 Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI Abstract 1 Introduction 2 Materials and methods 2.1 Study region 2.2 LAVESI model setup, parameterisation, and validation 2.2.4 LAVESI simulation setup for this study 2.2.5 Validation of the model’s performance 3 Results 3.1 Dynamics and spatial distribution changes of tree above-ground-biomass 3.2 Spatial and temporal validation of the contemporary larch AGB 4 Discussion 4.1 Future dynamics of tree AGB at a plot level 4.2 What are the future dynamics of tree AGB at the landscape level? 5 Conclusions Data availability Acknowledgements References Appendix B. Permutation tests for tree presence versus topographical parameters Appendix C. Landsat-based, field, and simulated estimations of larch above-ground biomass (AGB). 7 Synthesis 7.1 What changes in vegetation composition have happened from 2000 to 2017 in central Chukotka? 7.2 How have the above-ground biomass (AGB) distribution and rates changed from 2000 to 2017 in central Chukotka? 7.3 What are the spatial dynamics and rates of tree AGB change in the upcoming centuries in the northern tundra-taiga from 2020 to 3000 CE on the plot level and landscape level? References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI G6-19-92461
    Type of Medium: Dissertations
    Pages: XVI, 203 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2019 , Table of contents Abstract Zusammenfassung Abbreviations 1 Introduction 1.1 Scientific background 1.1.1 Permafrost in the Northern Hemisphere 1.1.2 The permafrost carbon climate feedback 1.1.3 Rapidly changing, deep permafrost environments 1.2 Aims of this dissertation 1.3 Investigated study areas 1.4 Basic method overview 1.4.1 Field work in the Arctic 1.4.2 Laboratory procedure 1.4.3 Analysis ofl andscape-scale carbon and nitrogen stocks 1.5 Thesis organization 1.6 Overview of publications 1.6.1 Publication#1 - Yedoma landscape publication 1.6.2 Publication#2 - Thermokarst lake sequence publication 1.6.3 Publication#3 - North Alaska Arctic river delta publication 1.6.4 Extended Abstract - Western Alaska river delta study 1.6.5 Appendices - Supplementary material and paper in preparation II Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia 2.1 Abstract 2.2 Introduction 2.3 Material and methods 2.3.1 Study area 2.3.2 Field Work 2.3.3 Laboratory analysis 2.3.4 Landform classification and upscaling C and N pools 2.4 Results 2.4.1 Sedimentological results 2.4.2 Sampling site SOC and N stocks 2.4.3 Upscaling: Landscape SOC and N stocks 2.4.4 Radiocarbon dates 2.5 Discussion 2.5.1 Site specific soil organic C and N stock characteristics 2.5.2 Upscaling of C and N pools 2.5.3 Sediment and organic C accumulation rates 2.5.4 Characterizing soil organic carbon 2.5.5 The fate of organic carbon in thermokarst-affected yedoma in Siberia 2.6 Conclusions III Impacts of successive thermokarst lake stages on soil organic matter, Arctic Alaska 3.1 Abstract 3.2 Plain language summary 3.3 Introduction 3.4 Study site 3.5 Methods 3.5.1 Core collection 3.5.2 Biogeochemical analyses 3.5.3 Study area OC and N calculation 3.6 Results 3.6.1 Biogeochemistry 3.6.2 Sediment organic carbon and nitrogen stocks 3.6.3 Radiocarbon dates and carbon accumulation rates 3.6.4 Landscape C and N budget 3.7 Discussion 3.7.1 Impact of thermokarst lake dynamics on organic matter storage 3.7.2 High organic C and N stocks on the ACP 3.7.3 Landscape chronology 3.7.4 Organic matter accumulation 3.7.5 Future development 3.8 Conclusions IV Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Material and Methods 4.4.1 Soil organic carbon and soil nitrogen storage 4.4.2 Radiocarbon dating and organic carbon accumulation rates 4.4.3 Grain size distribution 4.4.4 Scaling carbon and nitrogen contents to landscape level 4.5 Results 4.5.1 Carbon and nitrogen contents 4.5.2 Radiocarbon dates and accumulation rates 4.5.3 Grain size distribution 4.5.4 Arctic river delta carbon and nitrogen storage 4.6. Discussion 4.6.1 Significance of carbon and nitrogen stocks in Arctic river deltas 4.6.2 SOC and SN distribution with depth 4.6.3 Sedimentary characteristics 4.6.3.1 Accumulation rates 4.6.3.2 Sediment distribution 4.6.4 Impacts of future changes 4.6.5 Significance of remotely sensed upscaling results 4.7 Conclusions V Soil carbon and nitrogen stocks in Arctic river deltas - New data for three Western Alaskan deltas 5.1 Abstract 5.2 Introduction 5.3 Study sites 5.4 Methods 5.5 Results and discussion 5.5 Conclusions VI Discussion 6.1 Interregional comparison 6.2 Changing thermokarst landscapes and their global impact 6.3 A growing C and N data base 6.4 Outlook - potential follow-up projects VII Synthesis VIII References Appendix A Synthesis of SOC and N inventories Appendix B Supplementary material to Chapter II Appendix C Supplementary material to Chapter III Appendix D Supplementary material to Chapter IV Appendix E Supplementary material to Chapter V Appendix F Arctic river delta data set - Version 1.0 Acknowledgements - Danksagung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI G3-24-95700
    Description / Table of Contents: With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind’s fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation – the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region.
    Type of Medium: Dissertations
    Pages: X, 104, A-57 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Universität Potsdam, 2024 , Table of contents ABSTRACT ZUSAMMENFASSUNG ABBREVIATIONS AND NOMENCLATURE CHAPTER 1: INTRODUCTION 1.1 SCIENTIFIC BACKGROUND 1.1.1 ARCTIC GROUND 1.1.2 THE PHENOMENON OF PERMAFROST 1.1.3 ARCTIC NON - PERMAFROST AREAS 1.1.4 HYPOTHESIS 1.2 AIMS AND OBJECTIVES 1.3 METHODS 1.3.1 FIELD METHODS AND SAMPLING APPROACH 1.3.2 STUDY AREA SELECTION 1.3.3 LABORATORY METHODS 1.4 THESIS ORGANISATION CHAPTER 2: LARGE HERBIVORES ON PERMAFROST – A PILOT STUDY OF GRAZING IMPACTS ON PERMAFROST SOIL CARBON STORAGE IN NORTHEASTERN SIBERIA 2.1 ABSTRACT 2.2 I NTRODUCTION 2.3 STUDY AREA 2.4 METHODS 2.4.1 FIELD SAMPLING APPROACH 2.4.2 LABORATORY WORK 2.4.3 DATA ANALYSIS AND EXTERNAL DATA 2.5 RESULTS 2.5.1 VEGETATION ASSESSMENT 2.5.2 SEASONAL THAW DEPTH 2.5.3 CARBON PARAMETERS (TOC, TOC/TN RATIOS , AND Δ13 C RATIOS ) 2.5.4 GRAIN SIZE DISTRIBUTION AND WATER CONTENT 2.5.5 STATISTICS AND CORRELATION ANALYSIS 2.6 DISCUSSION 2.6.1 EFFECTS OF GRAZING ON VEGETATION STRUCTURE AND PERMAFROST THAW 2.6.2 CARBON ACCUMULATION UNDER GRAZING IMPACT 2.6.3 METHODOLOGICAL LIMITATIONS OF THE PILOT STUDY 2.7 CONCLUSION 2.8 DATA AVAILABILITY STATEMENT 2.9 AUTHOR CONTRIBUTIONS 2.10 FUNDING 2.11 ACKNOWLEDGEMENTS 2.12 CONFLICT OF INTERESTS CHAPTER 3: IMPACTS OF REINDEER ON SOIL CARBON STORAGE IN THE SEASONALLY FROZEN GROUND OF NORTHERN FINLAND: A PILOT STUDY 3.1 ABSTRACT 3.2 I NTRODUCTION 3.3 STUDY AREA 3.4 METHODS 3.4.1 FIELD WORK 3.4.2 LABORATORY ANALYSIS 3.4.3 DATA ANALYSIS AND CALCULATIONS 3.5 RESULTS 3.5.1 CORE DESCRIPTIONS 3.5.2 VEGETATION 3.5.3 CARBON PARAMETERS 3.5.6 COMPARATIVE DATA ANALYSIS 3.6 DISCUSSION 3.6.1 REINDEER IMPACT ON SOIL CARBON STORAGE 3.6.2 REINDEER IMPACT ON VEGETATION 3.6.3 REINDEER IMPACT ON GROUND CHARACTERISTICS 3.6.4 SOC DENSITY AND STOCKS ACROSS THE KUTUHARJU STATION AREA 3.6.5 METHODOLOGICAL LIMITATIONS OF THE PILOT STUDY DESIGN 3.6.6 IMPLICATIONS OF THE PILOT STUDY FOR FUTURE RESEARCH 3.7 CONCLUSION 3.8 DATA AVAILABILITY 3.9 AUTHOR CONTRIBUTION 3.10 COMPETING INTERESTS 3.11 ACKNOWLEDGEMENTS 3.12 FUNDING TABLE 3-1 TABLE 3-2 TABLE 3-3 CHAPTER 4: LIPID BIOMARKER SCREENING TO TRACE RECENT LARGE HERBIVORE INFLUENCE ON SOIL CARBON IN PERMAFROST AND SEASONALLY FROZEN ARCTIC GROUND 4.1 ABSTRACT 4.2 I NTRODUCTION 4.3 STUDY AREA 4.4 METHODS 4.4.1 SAMPLING APPROACH 4.4.2 LABORATORY ANALYSIS 4.4.3 LIPID BIOMARKER INDICES 4.4.4 STATISTICS 4.5 RESULTS 4.5.1 TOC 4.5.2 C/N RATIO 4.5.3 STABLE CARBON ISOTOPE RATIO 4.5.4 ABSOLUTE N- ALKANE CONCENTRATION 4.5.5 AVERAGE CHAIN LENGTH 4.5.6 CARBON PREFERENCE INDEX 4.5.7 HIGHER - PLANT ALCOHOL INDEX 4.5.8 STATISTICAL RESULTS 4.6 DISCUSSION 4.6.1 EFFECTS OF GRAZING INTENSITY ON BIOMARKER SIGNALS 4.6.2 EFFECTS OF GROUND THERMAL REGIME ON SOIL OM DEGRADATION 4.6.3 I MPACT OF HERBIVORY ON PERMAFROST OM STORAGE 4.7 CONCLUSION 4.8 ACKNOWLEDGEMENTS 4.9 COMPETING INTERESTS 4.10 AUTHOR CONTRIBUTION 4.11 FUNDING 4.12 DATA AVAILABILITY CHAPTER 5: SYNTHESIS 5.1 ECOSYSTEM CHANGES UNDER THE IMPACT OF LARGE HERBIVORES 5.2 GRAZING EFFECTS ON SOIL ORGANIC MATTER DECOMPOSITION 5.3 F EASIBILITY OF UTILISING HERBIVORY IN THE ARCTIC 5.4 RESEARCH IMPLICATIONS FOR SUCCESSFUL PLANNING AND USE OF ARCTIC HERBIVORY REFERENCES 93 FINANCIAL AND TECHNICAL SUPPORT APPENDIX 1 APPENDIX I ORGANIC CARBON CHARACTERISTICS IN ICE - RICH PERMAFROST IN ALAS AND YEDOMA DEPOSITS , CENTRAL YAKUTIA, SIBERIA APPENDIX II WHAT ARE THE EFFECTS OF HERBIVORE DIVERSITY ON TUNDRA ECOSYSTEMS ? A SYSTEMATIC REVIEW (ABSTRACT) APPENDIX III SUPPLEMENTARY MATERIAL TO CHAPTER 2: LARGE HERBIVORES ON PERMAFROST – A PILOT STUDY OF GRAZING IMPACTS ON PERMAFROST SOIL CARBON STORAGE IN NORTHEASTERN SIBERIA APPENDIX IV SUPPLEMENTARY MATERIAL TO CHAPTER 3: IMPACTS OF REINDEER ON SOIL CARBON STORAGE IN THE SEASONALLY FROZEN GROUND OF NORTHERN FINLAND : A PILOT STUDY APPENDIX V SUPPLEMENTARY MATERIAL TO CHAPTER 4: A PILOT STUDY OF LIPID BIOMARKERS TO TRACE RECENT LARGE HERBIVORE INFLUENCE ON SOIL CARBON IN PERMAFROST AND SEASONALLY ROZEN ARCTIC GROUND APPENDIX VI SUPPLEMENTARY MATERIAL TO APPENDIX IV: ORGANIC CARBON CHARACTERISTICS IN ICE - RICH PERMAFROST IN ALAS AND YEDOMA DEPOSITS , CENTRAL YAKUTIA, SIBERIA ACKNOWLEDGEMENTS - DANKSAGUNG
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...