ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-29
    Print ISSN: 0167-7764
    Electronic ISSN: 1573-0662
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-16
    Description: Halogenated very short-lived substances (VSLSs), such as bromoform (CHBr3), can be transported to the stratosphere and contribute to the halogen loading and ozone depletion. Given their highly variable emission rates and their short atmospheric lifetimes, the exact amount as well as the spatio-temporal variability of their contribution to the stratospheric halogen loading are still uncertain. We combine observational data sets with Lagrangian atmospheric modelling in order to analyse the spatial and temporal variability of the CHBr3 injection into the stratosphere for the time period 1979–2013. Regional maxima with mixing ratios of up to 0.4–0.5 ppt at 17 km altitude are diagnosed to be over Central America (1) and over the Maritime Continent–west Pacific (2), both of which are confirmed by high-altitude aircraft campaigns. The CHBr3 maximum over Central America is caused by the co-occurrence of convectively driven short transport timescales and strong regional sources, which in conjunction drive the seasonality of CHBr3 injection. Model results at a daily resolution reveal isolated, exceptionally high CHBr3 values in this region which are confirmed by aircraft measurements during the ACCENT campaign and do not occur in spatially or temporally averaged model fields. CHBr3 injection over the west Pacific is centred south of the Equator due to strong oceanic sources underneath prescribed by the here-applied bottom-up emission inventory. The globally largest CHBr3 mixing ratios at the cold point level of up to 0.6 ppt are diagnosed to occur over the region of India, Bay of Bengal, and Arabian Sea (3); however, no data from aircraft campaigns are available to confirm this finding. Inter-annual variability of stratospheric CHBr3 injection of 10 %–20 % is to a large part driven by the variability of coupled ocean–atmosphere circulation systems. Long-term changes, on the other hand, correlate with the regional sea surface temperature trends resulting in positive trends of stratospheric CHBr3 injection over the west Pacific and Asian monsoon region and negative trends over the east Pacific. For the tropical mean, these opposite regional trends balance each other out, resulting in a relatively weak positive trend of 0.017±0.012 ppt Br per decade for 1979–2013, corresponding to 3 % Br per decade. The overall contribution of CHBr3 together with CH2Br2 to the stratospheric halogen loading accounts for 4.7 ppt Br, in good agreement with existing studies, with 50 % and 50 % being injected in the form of source and product gases, respectively.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-21
    Description: Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-07
    Description: Oceanic very short-lived substances (VSLS), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Asian monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean well. Using monthly resolved emissions, main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric entrainment in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric entrainment of bromoform is in the same range whether using monthly or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary up to 50 % between using monthly and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine entrainment from the tropical Indian Ocean and west Pacific critically depends on the seasonality and spatial distribution of the VSLS emissions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-11
    Description: We combine available observational data sets with Lagrangian atmospheric modelling in order to analyze the spatial and temporal variability of the CHBr3 injection into the stratosphere. Regional maxima with mixing ratios of up to 0.4–0.5 ppt at 17 km altitude are diagnosed to be over Central America (1) and over the Maritime Continent/West Pacific (2), both of which are confirmed by high-altitude aircraft campaigns. The CHBr3 maximum over Central America is caused by the co-occurrence of convectively-driven short transport time scales and strong regional sources, which in conjunction drive the seasonality of CHBr3 injection. Model results at a daily resolution reveal isolated, exceptionally high CHBr3 values in this region which are confirmed by measurements during the ACCENT campaign and do not occur in spatially or temporally averaged model fields. CHBr3 injection over the West Pacific is centered south of the equator due to strong oceanic sources underneath prescribed by the here applied bottom-up emission inventory. The globally strongest stratospheric CHBr3 injection of up to 0.6 ppt is diagnosed to occur over the region of India, Bay of Bengal and Arabian Sea (3), however, no data from aircraft campaigns are available to confirm this finding. Interannual variability of stratospheric CHBr3 injection of 10–20 % is to a large part driven by the variability of coupled ocean-atmosphere circulation systems. Long-term changes, on the other hand, correlate with the regional SST trends resulting in positive trends of stratospheric CHBr3 injection over the West Pacific and Asian monsoon region and negative trends over the East Pacific. For the tropical mean, these opposite regional trends balance each other out resulting in a relatively weak positive trend of 0.017 ± 0.012 ppt Br/dec for 1979–2013, corresponding 3 % Br/dec. The overall contribution of CHBr3 together with CH2Br2 to the stratospheric halogen loading accounts for 4.7 ppt Br, in good agreement with existing studies, with 50 %/50 % being injected in form of source and product gases, respectively.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...