ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-28
    Description: Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C ∕ N atomic ratio, δ13C and δ15N data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter- and intraspecific differences in C ∕ N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C ∕ N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C ∕ N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The δ13C values range between −37.0 and −22.5 ‰ (median  =  −27.8 ‰). The δ15N values range between −6.6 and +1.7 ‰ (median  =  −2.2 ‰). We find differences in δ13C and δ15N compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xero-mesophilic and meso-hygrophilic mosses, i.e. having a dominance of n-alkanes with long (n-C29, n-C31) and intermediate (n-C25) chain lengths, respectively. Overall, our results reveal that C ∕ N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-16
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-29
    Description: Mosses are a major component of the arctic vegetation, particularly of wetlands. We present C / N ratio, δ13C and δ15N data of 400 moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n alkane patterns of six of these taxa were investigated. The aim of the study is to see whether the inter- and intra-specific differences in biochemical and isotopic signatures are indicative of habitat with particular respect to water-level. Overall, we find high variability in all investigated parameters. The C / N ratios range between 15.4 and 70.4 (median: 42.9) and show large variations at intra-specific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). We assume that this mainly originates from the association of mosses from wet habitats with microorganisms which supply them with nitrogen. Furthermore, because of the stability provided by water, they do not need to invest in a sturdy stem-structure and accordingly have lower C contents in their biomass. The δ13C values range between −37.0 and 22.5 ‰ (median = −27.8 ‰). The δ15N values range between −6.59 and +1.69 ‰ (median = 2.17 ‰).We find differences in δ13C and δ15N signatures between both habitat types and, for some species of the meso-hygrophilic group, a significant relation between the individual habitat water-level and isotopic signature was inferred as a function of microbial symbiosis. The n alkane distribution also shows differences primarily between xero-mesophilic and meso-hygrophilic mosses, i.e. having a dominance of n-alkanes with long (n-C29, n-C31) and intermediate chain lengths (n-C25), respectively. Overall, our results reveal that biochemical and isotopic signals of certain moss taxa from polygonal wetlands are characteristic of their habitat and can thus be used in (palaeo-)environmental studies.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2019-07-17
    Description: The spatial and temporal variability of a low-centred polygon on the eastern floodplain area of the lower Anabar River (72.070° N, 113.921° E; northern Yakutia, Siberia) has been investigated using a multi-method approach. The present-day vegetation in each square metre was analysed, revealing a community of Larix, shrubby Betula, and Salix on the polygon rim, a dominance of Carex and Andromeda polifolia in the rim-to-pond transition zone, and a predominantly monospecific Scorpidium scorpioides coverage within the pond. The total organic carbon (TOC) content, TOC / TN (total nitrogen) ratio, grain size, vascular plant macrofossils, moss remains, diatoms, and pollen were analysed for two vertical sections and a sediment core from a transect across the polygon. Radiocarbon dating indicates that the formation of the polygon started at least 1500 yr ago; the general positions of the pond and rim have not changed since that time. Two types of pond vegetation were identified, indicating two contrasting development stages of the polygon. The first was a well-established moss association, dominated by submerged or floating Scorpidium scorpioides and/or Drepanocladus spp. and overgrown by epiphytic diatoms such as Tabellaria flocculosa and Eunotia taxa. This stage coincides temporally with a period in which the polygon was only drained by lateral subsurface water flow, as indicated by mixed grain sizes. A different moss association occurred during times of repeated river flooding (indicated by homogeneous medium-grained sand that probably accumulated during the annual spring snowmelt), characterized by an abundance of Meesia triquetra and a dominance of benthic diatoms (e.g. Navicula vulpina), indicative of a relatively high pH and a high tolerance of disturbance. A comparison of the local polygon vegetation (inferred from moss and macrofossil spectra) with the regional vegetation (inferred from pollen spectra) indicated that the moss association with Scorpidium scorpioides became established during relatively favourable climatic conditions, while the association dominated by Meesia triquetra occurred during periods of harsh climatic conditions. Our study revealed a strong riverine influence (in addition to climatic influences) on polygon development and the type of peat accumulated.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Thesis , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-08-12
    Description: Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. We present a combined field- and model-based approach to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from northern taiga to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from northern taiga to single-tree tundra. Age-structure analyses indicate that the trees in the northern taiga and forest-tundra have been present for at least ~240 years. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra however, a change in growth form from krummholz to erect trees, beginning ~130 years ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the northern taiga and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-12
    Description: Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C ∕ N atomic ratio, δ13C and δ15N data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter- and intraspecific differences in C ∕ N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C ∕ N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C ∕ N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The δ13C values range between −37.0 and −22.5 ‰ (median  =  −27.8 ‰). The δ15N values range between −6.6 and +1.7 ‰ (median  =  −2.2 ‰). We find differences in δ13C and δ15N compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xero-mesophilic and meso-hygrophilic mosses, i.e. having a dominance of n-alkanes with long (n-C29, n-C31) and intermediate (n-C25) chain lengths, respectively. Overall, our results reveal that C ∕ N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-08-12
    Description: Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 years. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra however, a change in growth form from krummholz to erect trees, beginning ~130 years ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Journal of Vegetation Science, WILEY-BLACKWELL PUBLISHING, 27, pp. 377-386, ISSN: 1100-9233
    Publication Date: 2022-08-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...