ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (54)
Collection
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 150 (1997), S. 181-201 
    ISSN: 1420-9136
    Keywords: Key words: Fault dislocation, frictional heat production rheology, stress field.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. —A model is proposed to study the modification of the stress field at a transcurrent plate boundary due to frictional heat production at depth. Two cases are considered a stable and a stretched lithosphere. The model is applied to those weak faults where the dynamic friction is small compared to a static one; if the deformation along the brittle portion of the fault is entirely accommodated by a series of seismic ruptures in a quasi-static state where the fault has been moving for millions of years, the long-term thermal field perturbation due to these ruptures results in only a few degrees and can be neglected. The boundary zone is considered as a viscoelastic body subject to a constant strain rate. The lower section of the boundary is assumed to slip aseismically along a vertical transcurrent fault and to completely accommodate the plate motion, while the upper section is locked. The slipping zone is divided into a semi-brittle zone, placed between the isothermal surfaces of 300°C and 450°C, and a ductile zone beneath. The frictional heat is calculated by assuming a linearly decreasing friction in the semi-brittle and a constant friction in the ductile zones. The heat modifies the temperature field, producing an upward movement of the semi-brittle and ductile fault sections. As a consequence, the thickness of the brittle fault section is reduced and friction at the base of this section is less. The stress field in the boundary zone is calculated as a function of time for different friction profiles and slip rates on the fault. Owing to heat production, a greater stress concentration is produced on the brittle fault section, while shear stress is lowered in regions occupied by the uplifted semi-brittle layer. These effects are found to be remarkable only in the case of a stable zone, with a standard unperturbed geotherm, while they are irrelevant in a stretched zone with a high geothermal gradient. In any case, the role of the semi-brittle layer appears to be more prominent in the case of boundaries with higher slip rates, due to the presence of higher stress values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 146 (1996), S. 319-341 
    ISSN: 1420-9136
    Keywords: Stress evolution ; geothermal profiles ; shear zone rheology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Areas which are geodynamically different have different behaviors both in their thermal regime and seismic activity. A stable area has a geotherm which can be considered as standard, extensional and compressional areas have, respectively, high and low temperature gradients. The Italian region includes different geodynamical areas and all such situations are present. We consider the Apulian platform as an example of a stable area and the Tuscany-Latium as an example of an extensional area. For both of them the present geotherms are calculated, taking into account, for the Tuscany-Latium, its thermal history. Assuming that each region is subject to a constant strain rate, the stresses are calculated as functions of depth and time. The rheological behavior is assumed to be linear viscoelastic, with viscosity dependent on temperature and elastic parameters dependent on lithology. The geothermal profile and the rheological structure of the lithosphere remarkably affect the processes of stress accumulation which control the distribution of seismic activity. The abrupt decrease of the temperature gradient at the Moho produces considerably higher stress values with respect to the case of uniform gradient, thus favoring subcrustal seismicity. In the case of a standard temperature gradient, subcrustal seismicity is predicted and a gap in seismicity, indicating a soft intracrustal layer, exists if there is a discontinuity in rheology. By contrast, in the case of a high-temperature gradient, subcrustal seismicity is not to be expected, even in the presence of a discontinuity in rheology, since subcrustal temperatures are already too high to permit a sufficient stress accumluation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 101 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A 2-D model which represents a slipping fault with non-uniform Coulomb friction is studied. The fault plane is subject to a uniform ambient shear stress, slowly increasing with time. Aseismic fault creep is assumed to start in a weak zone, when the ambient stress reaches a strength threshold. The solution for the resulting dislocation is worked out analytically using a technique based on Chebyshev polynomials. It is found that the dislocation partially propagates into the adjacent asperities, concentrating stress onto them and preparing the conditions which will produce the asperity failure and the accompanying earthquake. Propagation is not self-similar and occurs at increasing velocity. A non-linear slip hardening effect is reproduced. The nearness to earthquake instability is measured by a dimensionless parameter which depends on Coulomb friction and ambient shear stress and decreases to zero with time. An upper boundary to the critical value of this parameter, at which instability may occur, is estimated and is found to depend on the ratio between the sizes of the asperity and the weak zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 72 (1992), S. 49-57 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 43 (1986), S. 223-235 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 56 (1989), S. 316-328 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics of the Earth and Planetary Interiors 80 (1993), S. 1-11 
    ISSN: 0031-9201
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 47 (1984), S. 343-347 
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract An analytical solution is derived for the size reduction of a spherical magma chamber cooling by conduction. The use of moving boundary conditions and the constraint of a spherical symmetry allow one to ignore the details of the heat redistribution processes which take place within the magma chamber. The dependence of the solution on the initial conditions is investigated. A simple solution is found for short time, which is shown to be valid for times long enough to make it useful in the volcanological context. Moreover, the general solution confirms that the hydrothermal contribution to heat transfer in Phlegraean Fields cannot be extremely important.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: 〈span〉〈div〉Summary〈/div〉We calculate the change in effusion rate of lava from a volcanic fissure due to pressure changes in the volcanic conduit. The conduit is modelled as a cylinder with elliptical cross section, embedded in an elastic medium. The elliptical shape can represent a wide range of cross sections, according to the value of eccentricity, from almost circular vents to very long and narrow fissures. A 2-D problem is considered assuming invariance of pressure changes and conduit geometry with depth. The problem is solved analytically and expressions for the displacement and the stress fields in the elastic medium are provided. The displacement of the conduit wall is proportional to the ratio between the pressure change and the rigidity of surrounding rocks. The flow rate is a nonlinear function of the pressure change and increases with increasing pressure, due to the elastic deformation of the conduit wall. We consider flow rate oscillations with periods ranging from several minutes to hours, as are often observed during effusive eruptions. Assuming pressure oscillations with these periods, flow rate oscillations resulting from the elastic deformation of the conduit are calculated. The greatest oscillations in flow rate are obtained for very large values of the conduit eccentricity, corresponding to long and narrow volcanic fissures. For example, if a fissure is 100 m long and 2 m large, a pressure oscillation with an amplitude of 1 MPa yields a maximum displacement of the conduit wall equal to about 6 cm and an amplitude of flow rate oscillations of about 20%.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-13
    Description: A fault made of two coplanar asperities subject to a constant strain rate is considered. The fault is modelled as a discrete dynamical system made of two blocks coupled by a spring and pulled at constant velocity on a rough plane. Such a system exhibits a variety of slipping modes, including the slip of single asperities and the simultaneous slip of both asperities. The associated source function can be expressed by the seismic moment rate as a function of time. The moment rate depends on the state of the system preceding the earthquake, which can be described by a single variable expressing the difference between the stresses imposed to the two asperities. We present a systematic study of the moment rate as a function of this variable and show how the moment rate changes as a function of the model parameters. The observed source function of the 2010 Maule (Chile) earthquake, that was the result of the failure of two main asperities, is interpreted in the framework of the proposed model.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...