ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (11)
  • 1
    Publication Date: 2011-01-29
    Description: 'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locke, Devin P -- Hillier, LaDeana W -- Warren, Wesley C -- Worley, Kim C -- Nazareth, Lynne V -- Muzny, Donna M -- Yang, Shiaw-Pyng -- Wang, Zhengyuan -- Chinwalla, Asif T -- Minx, Pat -- Mitreva, Makedonka -- Cook, Lisa -- Delehaunty, Kim D -- Fronick, Catrina -- Schmidt, Heather -- Fulton, Lucinda A -- Fulton, Robert S -- Nelson, Joanne O -- Magrini, Vincent -- Pohl, Craig -- Graves, Tina A -- Markovic, Chris -- Cree, Andy -- Dinh, Huyen H -- Hume, Jennifer -- Kovar, Christie L -- Fowler, Gerald R -- Lunter, Gerton -- Meader, Stephen -- Heger, Andreas -- Ponting, Chris P -- Marques-Bonet, Tomas -- Alkan, Can -- Chen, Lin -- Cheng, Ze -- Kidd, Jeffrey M -- Eichler, Evan E -- White, Simon -- Searle, Stephen -- Vilella, Albert J -- Chen, Yuan -- Flicek, Paul -- Ma, Jian -- Raney, Brian -- Suh, Bernard -- Burhans, Richard -- Herrero, Javier -- Haussler, David -- Faria, Rui -- Fernando, Olga -- Darre, Fleur -- Farre, Domenec -- Gazave, Elodie -- Oliva, Meritxell -- Navarro, Arcadi -- Roberto, Roberta -- Capozzi, Oronzo -- Archidiacono, Nicoletta -- Della Valle, Giuliano -- Purgato, Stefania -- Rocchi, Mariano -- Konkel, Miriam K -- Walker, Jerilyn A -- Ullmer, Brygg -- Batzer, Mark A -- Smit, Arian F A -- Hubley, Robert -- Casola, Claudio -- Schrider, Daniel R -- Hahn, Matthew W -- Quesada, Victor -- Puente, Xose S -- Ordonez, Gonzalo R -- Lopez-Otin, Carlos -- Vinar, Tomas -- Brejova, Brona -- Ratan, Aakrosh -- Harris, Robert S -- Miller, Webb -- Kosiol, Carolin -- Lawson, Heather A -- Taliwal, Vikas -- Martins, Andre L -- Siepel, Adam -- Roychoudhury, Arindam -- Ma, Xin -- Degenhardt, Jeremiah -- Bustamante, Carlos D -- Gutenkunst, Ryan N -- Mailund, Thomas -- Dutheil, Julien Y -- Hobolth, Asger -- Schierup, Mikkel H -- Ryder, Oliver A -- Yoshinaga, Yuko -- de Jong, Pieter J -- Weinstock, George M -- Rogers, Jeffrey -- Mardis, Elaine R -- Gibbs, Richard A -- Wilson, Richard K -- G0501331/Medical Research Council/United Kingdom -- HG002238/HG/NHGRI NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- P01 AG022064/AG/NIA NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003079-08/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Jan 27;469(7331):529-33. doi: 10.1038/nature09687.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. dlocke@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21270892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Centromere/genetics ; Cerebrosides/metabolism ; Chromosomes ; Evolution, Molecular ; Female ; Gene Rearrangement/genetics ; Genetic Speciation ; *Genetic Variation ; Genetics, Population ; Genome/*genetics ; Humans ; Male ; Phylogeny ; Pongo abelii/*genetics ; Pongo pygmaeus/*genetics ; Population Density ; Population Dynamics ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-09
    Description: Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scally, Aylwyn -- Dutheil, Julien Y -- Hillier, LaDeana W -- Jordan, Gregory E -- Goodhead, Ian -- Herrero, Javier -- Hobolth, Asger -- Lappalainen, Tuuli -- Mailund, Thomas -- Marques-Bonet, Tomas -- McCarthy, Shane -- Montgomery, Stephen H -- Schwalie, Petra C -- Tang, Y Amy -- Ward, Michelle C -- Xue, Yali -- Yngvadottir, Bryndis -- Alkan, Can -- Andersen, Lars N -- Ayub, Qasim -- Ball, Edward V -- Beal, Kathryn -- Bradley, Brenda J -- Chen, Yuan -- Clee, Chris M -- Fitzgerald, Stephen -- Graves, Tina A -- Gu, Yong -- Heath, Paul -- Heger, Andreas -- Karakoc, Emre -- Kolb-Kokocinski, Anja -- Laird, Gavin K -- Lunter, Gerton -- Meader, Stephen -- Mort, Matthew -- Mullikin, James C -- Munch, Kasper -- O'Connor, Timothy D -- Phillips, Andrew D -- Prado-Martinez, Javier -- Rogers, Anthony S -- Sajjadian, Saba -- Schmidt, Dominic -- Shaw, Katy -- Simpson, Jared T -- Stenson, Peter D -- Turner, Daniel J -- Vigilant, Linda -- Vilella, Albert J -- Whitener, Weldon -- Zhu, Baoli -- Cooper, David N -- de Jong, Pieter -- Dermitzakis, Emmanouil T -- Eichler, Evan E -- Flicek, Paul -- Goldman, Nick -- Mundy, Nicholas I -- Ning, Zemin -- Odom, Duncan T -- Ponting, Chris P -- Quail, Michael A -- Ryder, Oliver A -- Searle, Stephen M -- Warren, Wesley C -- Wilson, Richard K -- Schierup, Mikkel H -- Rogers, Jane -- Tyler-Smith, Chris -- Durbin, Richard -- 062023/Wellcome Trust/United Kingdom -- 075491/Z/04/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077192/Wellcome Trust/United Kingdom -- 077198/Wellcome Trust/United Kingdom -- 089066/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 095908/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 202218/European Research Council/International -- A15603/Cancer Research UK/United Kingdom -- G0501331/Medical Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- HG002385/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- WT062023/Wellcome Trust/United Kingdom -- WT077009/Wellcome Trust/United Kingdom -- WT077192/Wellcome Trust/United Kingdom -- WT077198/Wellcome Trust/United Kingdom -- WT089066/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Mar 7;483(7388):169-75. doi: 10.1038/nature10842.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Female ; Gene Expression Regulation ; *Genetic Speciation ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Gorilla gorilla/*genetics ; Humans ; Macaca mulatta/genetics ; Molecular Sequence Data ; Pan troglodytes/genetics ; Phylogeny ; Pongo/genetics ; Proteins/genetics ; Sequence Alignment ; Species Specificity ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-18
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-08-11
    Description: Motivation: In many organisms, including humans, recombination clusters within recombination hotspots. The standard method for de novo detection of recombinants at hotspots is sperm typing. This relies on allele-specific PCR at single nucleotide polymorphisms. Designing allele-specific primers by hand is time-consuming. We have therefore written a package to support hotspot detection and analysis. Results: hotspot consists of four programs: asp looks up SNPs and designs allele-specific primers; aso constructs allele-specific oligos for mapping recombinants; xov implements a maximum-likelihood method for estimating the crossover rate; six, finally, simulates typing data. Availability and Implementation : hotspot is written in C. Sources are freely available under the GNU General Public License from http://github.com/evolbioinf/hotspot/ Contact: haubold@evolbio.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-20
    Description: The unique inheritance pattern of the X chromosome exposes it to natural selection in a way that is different from that of the autosomes, potentially resulting in accelerated evolution. We perform a comparative analysis of X chromosome polymorphism in 10 great ape species, including humans. In most species, we identify...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-04
    Description: In a genome alignment of five individuals of the ascomycete fungus Zymoseptoria pseudotritici, a close relative of the wheat pathogen Z. tritici (synonym Mycosphaerella graminicola), we observed peculiar diversity patterns. Long regions up to 100 kb without variation alternate with similarly long regions of high variability. The variable segments in the genome alignment are organized into two main haplotype groups that have diverged ∼3% from each other. The genome patterns in Z. pseudotritici are consistent with a hybrid speciation event resulting from a cross between two divergent haploid individuals. The resulting hybrids formed the new species without backcrossing to the parents. We observe no variation in 54% of the genome in the five individuals and estimate a complete loss of variation for at least 30% of the genome in the entire species. A strong population bottleneck following the hybridization event caused this loss of variation. Variable segments in the Z. pseudotritici genome exhibit the two haplotypes contributed by the parental individuals. From our previously estimated recombination map of Z. tritici and the size distribution of variable chromosome blocks untouched by recombination we estimate that the hybridization occurred ∼380 sexual generations ago. We show that the amount of lost variation is explained by genetic drift during the bottleneck and by natural selection, as evidenced by the correlation of presence/absence of variation with gene density and recombination rate. The successful spread of this unique reproductively isolated pathogen highlights the strong potential of hybridization in the emergence of pathogen species with sexual reproduction.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-16
    Description: The analysis of extant sequences shows that molecular evolution has been heterogeneous through time and among lineages. However, for a given sequence alignment, it is often difficult to uncover what factors caused this heterogeneity. In fact, identifying and characterizing heterogeneous patterns of molecular evolution along a phylogenetic tree is very challenging, for lack of appropriate methods. Users either have to a priori define groups of branches along which they believe molecular evolution has been simila or have to allow each branch to have its own pattern of molecular evolution. The first approach assumes prior knowledge that is seldom available, and the second requires estimating an unreasonably large number of parameters. Here we propose a convenient and reliable approach where branches get clustered by their pattern of molecular evolution alone, with no need for prior knowledge about the data set under study. Model selection is achieved in a statistical framework and therefore avoids overparameterization. We rely on substitution mapping for efficiency and present two clustering approaches, depending on whether or not we expect neighbouring branches to share more similar patterns of sequence evolution than distant branches. We validate our method on simulations and test it on four previously published data sets. We find that our method correctly groups branches sharing similar equilibrium GC contents in a data set of ribosomal RNAs and recovers expected footprints of selection through d N /d S . Importantly, it also uncovers a new pattern of relaxed selection in a phylogeny of Mantellid frogs, which we are able to correlate to life-history traits. This shows that our programs should be very useful to study patterns of molecular evolution and reveal new correlations between sequence and species evolution. Our programs can run on DNA, RNA, codon, or amino acid sequences with a large set of possible models of substitutions and are available at http://biopp.univ-montp2.fr/forge/testnh .
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-03
    Description: Positions in a molecule that share a common constraint do not evolve independently, and therefore leave a signature in the patterns of homologous sequences. Exhibiting such positions with a coevolution pattern from a sequence alignment has great potential for predicting functional and structural properties of molecules through comparative analysis. This task is complicated by the existence of additional correlation sources, leading to false predictions. The nature of the data is a major source of noise correlation: sequences are taken from individuals with different degrees of relatedness, and who therefore are intrinsically correlated. This has led to several method developments in different fields that are potentially confusing for non-expert users interested in these methodologies. It also explains why coevolution detection methods are largely unemployed despite the importance of the biological questions they address. In this article, I focus on the role of shared ancestry for understanding molecular coevolution patterns. I review and classify existing coevolution detection methods according to their ability to handle shared ancestry. Using a ribosomal RNA benchmark data set, for which detailed knowledge of the structure and coevolution patterns is available, I demonstrate and explain why taking the underlying evolutionary history of sequences into account is the only way to extract the full coevolution signal in the data. I also evaluate, using rigorous statistical procedures, the best approaches to do so, and discuss several important biological aspects to consider when performing coevolution analyses.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-20
    Description: Smut fungi are plant pathogens mostly parasitizing wild species of grasses as well as domesticated cereal crops. Genome analysis of several smut fungi including Ustilago maydis revealed a singular clustered organization of genes encoding secreted effectors. In U. maydis , many of these clusters have a role in virulence. Reconstructing the evolutionary history of clusters of effector genes is difficult because of their intrinsically fast evolution, which erodes the phylogenetic signal and homology relationships. Here, we describe the use of comparative evolutionary analyses of quality draft assemblies of genomes to study the mechanisms of this evolution. We report the genome sequence of a South African isolate of Sporisorium scitamineum , a smut fungus parasitizing sugar cane with a phylogenetic position intermediate to the two previously sequenced species U. maydis and Sporisorium reilianum . We show that the genome of S. scitamineum contains more and larger gene clusters encoding secreted effectors than any previously described species in this group. We trace back the origin of the clusters and find that their evolution is mainly driven by tandem gene duplication. In addition, transposable elements play a major role in the evolution of the clustered genes. Transposable elements are significantly associated with clusters of genes encoding fast evolving secreted effectors. This suggests that such clusters represent a case of genome compartmentalization that restrains the activity of transposable elements on genes under diversifying selection for which this activity is potentially beneficial, while protecting the rest of the genome from its deleterious effect.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-12
    Description: Efficient algorithms and programs for the analysis of the ever-growing amount of biological sequence data are strongly needed in the genomics era. The pace at which new data and methodologies are generated calls for the use of pre-existing, optimized—yet extensible—code, typically distributed as libraries or packages. This motivated the Bio++ project, aiming at developing a set of C++ libraries for sequence analysis, phylogenetics, population genetics, and molecular evolution. The main attractiveness of Bio++ is the extensibility and reusability of its components through its object-oriented design, without compromising the computer-efficiency of the underlying methods. We present here the second major release of the libraries, which provides an extended set of classes and methods. These extensions notably provide built-in access to sequence databases and new data structures for handling and manipulating sequences from the omics era, such as multiple genome alignments and sequencing reads libraries. More complex models of sequence evolution, such as mixture models and generic n -tuples alphabets, are also included.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...