ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (42)
Collection
Journal
  • 1
    Publication Date: 2018-06-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-31
    Description: By means of a variety of international observing and modeling efforts, the ocean carbon community has developed several independent estimates for ocean carbon uptake. In this presentation, we report on the synthesis effort we are undertaking under the auspices of an Ocean Carbon and Biogeochemistry Working Group. Our initial goal for this working group is to determine the best estimate for the net and anthropogenic carbon sink from 1994-2007, and then to infer the total magnitude of the poorly quantified fluxes that constitute their difference. Estimates for the net, or contemporary, ocean carbon uptake are derived from surface ocean pCO2 data interpolated to global coverage. From 4 of these products, we find Fnet = -1.7 PgC/yr for 1994-2007. Estimates for uptake of anthropogenic carbon comes from (1) interior observations of dissolved inorganic carbon and other tracers, (2) an ocean model constrained with observations, and (3) a suite of nine free-running ocean hindcast models in which the natural carbon cycle is assumed to be in a long-term steady state. Fant = -2.3 PgC/yr from the mean of these approaches. The difference between these two estimates is -0.6 PgC/yr, and acts as a quantitative constraint on the sum of the additional fluxes. As coastal zones and the Arctic are additional net carbon sinks, the sum of outgassed river-derived carbon, skin temperature effects on air-sea CO2 exchange, and non-steady state natural carbon fluxes in the open ocean can be no larger than a few tenths of PgC/yr. Our presentation details the uncertainties and assumptions made in deriving these estimates, and suggests paths forward to further reduce uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-06
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 122-135, doi:10.5670/oceanog.2015.36.
    Description: The continental shelves of the Pacific-Arctic Region (PAR) are especially vulnerable to the effects of ocean acidification (OA) because the intrusion of anthropogenic CO2 is not the only process that can reduce pH and carbonate mineral saturation states for aragonite (Ωarag). Enhanced sea ice melt, respiration of organic matter, upwelling, and riverine inputs have been shown to exacerbate CO2 -driven ocean acidification in high-latitude regions. Additionally, the indirect effect of changing sea ice coverage is providing a positive feedback to OA as more open water will allow for greater uptake of atmospheric CO2 . Here, we compare model-based outputs from the Community Earth System Model with a subset of recent ship-based observations, and take an initial look at future model projections of surface water Ωarag in the Bering, Chukchi, and Beaufort Seas. We then use the model outputs to define benchmark years when biological impacts are likely to result from reduced Ωarag. Each of the three continental shelf seas in the PAR will become undersaturated with respect to aragonite at approximately 30-year intervals, indicating that aragonite undersaturations gradually progress upstream along the flow path of the waters as they move north from the Pacific Ocean. However, naturally high variability in Ωarag may indicate higher resilience of the Bering Sea ecosystem to these low-Ωarag conditions than the ecosystems of the Chukchi and the Beaufort Seas. Based on our initial results, we have determined that the annual mean for Ωarag will pass below the current range of natural variability in 2025 for the Beaufort Sea and 2027 for the Chukchi Sea. Because of the higher range of natural variability, the annual mean for Ωarag for the Bering Sea does not pass out of the natural variability range until 2044. As Ωarag in these shelf seas slips below the present-day range of large seasonal variability by mid-century, the diverse ecosystems that support some of the largest commercial and subsistence fisheries in the world may be under tremendous pressure.
    Description: This project was funded by the National Science Foundation (PLR- 1041102 and AGS-1048827).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 152 (2018): 67-81, doi:10.1016/j.dsr2.2018.05.020.
    Description: Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5–1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.
    Description: National Science Foundation Grant PLR-1303617.
    Keywords: Ocean acidification ; Pacific Arctic ; Arctic Ocean ; East Siberian Sea ; Chukchi Sea ; Beaufort Sea ; Transport ; Arctic Rivers ; Sea Ice ; Respiration ; Upwelling ; Biological vulnerability ; Community resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Progress in Oceanography 136 (2015): 71-91, doi:10.1016/j.pocean.2014.07.001.
    Description: The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state’s commercial fisheries and traditional subsistence way of life. Prior studies of OA’s potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska’s federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.
    Description: This study is part of the Synthesis of Arctic Research (SOAR) and was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Environmental Studies Program through Interagency Agreement No. M11PG00034 with the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), Office of Oceanic and Atmospheric Research (OAR), Pacific Marine Environmental Laboratory (PMEL).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T. W., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W-J., Chen, C-T. A., Cross, J., Garcia, H., Hernandez-Ayon J. M., Hu, X., Kozyr, A., Langdon, C., Lee., K, Salisbury, J., Wang, Z. A., & Xue, L. Best practice data standards for discrete chemical oceanographic observations. Frontiers in Marine Science, 8, (2022): 705638, https://doi.org/10.3389/fmars.2021.705638.
    Description: Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.
    Description: Funding for L-QJ and AK was from NOAA Ocean Acidification Program (OAP, Project ID: 21047) and NOAA National Centers for Environmental Information (NCEI) through NOAA grant NA19NES4320002 [Cooperative Institute for Satellite Earth System Studies (CISESS)] at the University of Maryland/ESSIC. BT was in part supported by the Australia’s Integrated Marine Observing System (IMOS), enabled through the National Collaborative Research Infrastructure Strategy (NCRIS). AD was supported in part by the United States National Science Foundation. AV and FP were supported by BOCATS2 Project (PID2019-104279GB-C21/AEI/10.13039/501100011033) funded by the Spanish Research Agency and contributing to WATER:iOS CSIC interdisciplinary thematic platform. MH was partly funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement N°821001 (SO-CHIC).
    Keywords: Data standard for chemical oceanography ; Discrete chemical oceanographic observations ; Column header abbreviations ; WOCE WHP exchange formats ; Quality control flags ; Content vs. concentration ; CO2SYS ; TEOS-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Workshop held August 19-21, 2014, Woods Hole, MA
    Description: Relative to their surface area, continental margins represent some of the largest carbon fluxes in the global ocean, but sparse and sporadic sampling in space and time makes these systems difficult to characterize and quantify. Recognizing the importance of continental margins to the overall North American carbon budget, terrestrial and marine carbon cycle scientists have been collaborating on a series of synthesis, carbon budgeting, and modeling exercises for coastal regions of North America, which include the Gulf of Mexico, the Laurentian Great Lakes (LGL), and the coastal waters of the Atlantic, Pacific, and Arctic Oceans. The Coastal CARbon Synthesis (CCARS) workshops and research activities have been conducted over the past several years as a partner activity between the Ocean Carbon and Biogeochemistry (OCB) Program and the North American Carbon Program (NACP) to synthesize existing data and improve quantitative assessments of the North American carbon budget.
    Description: The authors of this science plan wish to acknowledge the generous support of NASA (NNX10AU78G) and NSF (OCE-1107285) for all of the CCARS activities, including a kickoff meeting (December 2010), a series of regional workshops (Atlantic coast, Gulf of Mexico, Pacific coast), and the final community workshop (August 2014).
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...