ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-19
    Description: Low resolution thermal emission spectra of several dozen extrasolar planets have been measured using Spitzer, and HST observations of a few key exoplanets have reported molecular abundances via transmission spectroscopy. However, current models for the atmospheric structure of these worlds exhibit degeneracies wherein different combinations of temperature and molecular abundance profiles can fit the same Spitzer data. The advent of the IR capability on HST/WFC3 allows us to address this problem. We are currently obtaining transmission spectroscopy of the 1.4-micron water band in a sample of 13 planets, using the G141 grism on WFC3. This is the largest pure-exoplanet program ever executed on HST (115 orbits). Among the abundant molecules, only water absorbs significantly at 1.4-microns, and our measurement of water abundance will enable us to break the degeneracies in the Spitzer results with minimal model assumptions. We are also using the G141 grism to observe secondary eclipses for 7 very hot giant exoplanets at 1.S-microns, including several bright systems in the Kepler and CoRoT fields. The strong temperature sensitivity of the thermal continuum at 1.S-microns provides high leverage on atmospheric temperature for these worlds, again helping to break degeneracies in interpreting the Spitzer data. We here describe preliminary results for several exoplanets observed in this program.
    Keywords: Astronomy
    Type: GSFC.ABS.4245.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: High-resolution spectra of the hot white dwarf G191-B2B covering the wavelength region 905-1187A were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Telescope STIS observations to evaluate the total H(sub I), D(sub I), O(sub I) and N(sub I) column densities along the line of sight. Previous determinations of N(D(sub I)) based upon GHRS (Goddard High Resolution Spectrograph) and STIS (Space Telescope Imaging Spectrograph) observations were controversial due to the saturated strength of the D(sub I) Lyman alpha line. In the present analysis the column density of D(sub I) has been measured using only the unsaturated Lyman beta and Lyman gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental character series has been performed. The column densities derived are: log N(D(sub I)) = 13.40+/-0.07, log N(O(sub I)) = 14.86+/-0.07, and log N(N(sub I)) = 13.87+/-0.07 quoted with 2sigma, uncertainties. The measurement of the H(sub I) column density by profile fitting of the Lyman alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the H(sub I)) column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman alpha are excellent. The new estimate of N(H(sub I)) toward G191-B2B reads: logN(H (sub I)) = 18.18+/-0.18 (2sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H)= 1.66(+0.9/-0.6) x 10(exp -5) (2sigma uncertainty).
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: We present a deuterium abundance analysis of the line of sight toward the white dwarf WD 2211-495 observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). Numerous interstellar lines are detected on the continuum of the stellar spectrum. A thorough analysis was performed through the simultaneous fit of interstellar absorption lines detected in the four FUSE channels of multiple observations with different slits. We excluded all saturated lines in order to reduce possible systematic errors on the column density measurements. We report the determination of the average interstellar D/O and D/N ratios along this line of sight at the 95% confidence level: D/O = 4.0 (+/-1.2) x 10(exp -2); D/N = 4.4 (+/-1.3) x 10(exp -1). In conjunction with FUSE observations of other nearby sight lines, the results of this study will allow a deeper understanding of the present-day abundance of deuterium in the local interstellar medium and its evolution with time.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...