ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: retinoic acid ; chondrocytes ; weight-bearing joints ; proteoglycan synthesis ; proteoglycan depletion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of retinoic acid (RA) on primary cultures of growth plate chondrocytes obtained from weight-bearing joints was examined. Chondrocytes were isolated from the tibial epiphysis of 6- to 8-week-old broiler-strain chickens and cultured in either serum-containing or serum-free media. RA was administered at low levels either transiently or continuously after the cells had become established in culture. Effects of RA on cellular protein levels, alkaline phosphatase (AP) activity, synthesis of proteoglycan (PG), matrix calcification, cellular morphology, synthesis of tissue-specific types of collagen, and level of matrix metalloproteinase (MMP) activity were explored. RA treatment generally increased AP activity, and stimulated mineral deposition, especially if present continuously. RA also caused a shift in cell morphology from spherical/polygonal to spindle-like. This occurred in conjunction with a change in the type of collagen synthesized: type X and II collagens were decreased, while synthesis of type I collagen was increased. There was also a marked increase in the activity of MMP. Contrasting effects of continuous RA treatment on cellular protein levels were seen: they were enhanced in serum-containing media, but decreased in serum-free HL-1 media. Levels of RA as low as 10 nM significantly inhibited PG synthesis and caused depletion in the levels of PG in the medium and cell-matrix layer. Thus, in these appendicular chondrocytes, RA suppressed chondrocytic (PG, cartilage-specific collagens) and enhanced osteoblastic phenotype (cell morphology, type I collagen, alkaline phosphatase, and mineralization). J. Cell. Biochem. 65:209-230. © 1997 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...