ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • viscosity of melts by capillary and slit die methods  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 347-356 
    ISSN: 0887-6266
    Keywords: viscosity of melts by capillary and slit die methods ; liquid crystal polymers, viscosities, comparison of capillary and slit die result for ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Viscosity measurements on two commercial thermotropic liquid crystalline polymers (LCPs) (a copolyester and a polyesteramide) were performed using both capillary and slit die methods. The results are in agreement with those presented in the literature for the same LCPs, when the measurements are carried out with a L/D = 30 die; these results are affected more by Bagley corrections for the polyesteramide than for the copolyester. For both LCPs, viscosities measured in the slit die are lower than those obtained by capillary rheometry. Nevertheless, the difference is much bigger in the case of the polyesteramide, for which a reduction by a factor of 3 is observed. This is not due to the preshear or thermal history, since the same piston-barrel system and thermal treatment were applied in both types of measurements. Depending on the polymer sample and temperature, concave and convex curvatures were observed in the pressure profiles during the slit flow. From these curvatures, the pressure coefficient α of viscosity was evaluated. However, in the case of the polyesteramide the convex curvature leads to a negative coefficient (the viscosity decreases with pressure, instead of increasing). This result may be explained by envisaging a change in the structure of the melt along the slit length. © 1993 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...