ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: drug carrier ; oral drug delivery ; vaccine ; absorption ; bioavailability ; endocytosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To study the uptake of biodegradable microparticles in Caco-2 cells. Methods. Biodegradable microparticles of polylactic polyglycolic acid co-polymer (PLGA 50:50) of mean diameters 0.1 μm, 1 μm, and 10 μm containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker were formulated by a multiple emulsion technique. The Caco-2 cell monolayers were incubated with each diameter microparticles (100 μg/ml) for two hours. The microparticle uptake in Caco-2 cells was studied by confocal microscopy and also by quantitating the 6-coumarin content of the microparticles taken up by the cells. The effects of microparticle concentration, and incubation time and temperature on microparticle cell uptake were also studied. Results. The study demonstrated that the Caco-2 cell microparticle uptake significantly depends upon the microparticle diameter. The 0.1 μm diameter microparticles had 2.5 fold greater uptake on the weight basis than the 1 μm and 6 fold greater than the 10 μm diameter microparticles. Similarly in terms of number the uptake of 0.1 μm diameter microparticles was 2.7 × 103 fold greater than the 1 μm and 6.7 × 106 greater than the 10 μm diameter microparticles. The efficiency of uptake of 0.1 μm diameter microparticles at 100 μg/ml concentration was 41% compared to 15% and 6% for the 1 μm and the 10 μm diameter microparticles, respectively. The Caco-2 cell microparticle (0.1 μm) uptake increased with concentration in the range of 100 μg/ml to 500 μg/ml which then reached a plateau at higher concentration. The uptake of microparticles increased with incubation time, reaching a steady state at two hours. The uptake was greater at an incubation temperature of 37°C compared to at 4°C. Conclusions. The Caco-2 cell microparticle uptake was microparticle diameter, concentration, and incubation time and temperature dependent. The small diameter microparticles (0.1 μm) had significantly greater uptake compared to larger diameter microparticles. The results thus suggest that the mechanism of uptake of microparticles in Caco-2 cell is particle diameter dependent. Caco-2 cells are used as an in vitro model for gastrointestinal uptake, and therefore the results obtained in these studies could be of significant importance in optimizing the microparticle-based oral drug delivery systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: oral ; drug delivery ; nanoparticles ; Peyer's patches ; size exclusion ; vaccine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To investigate the effect of microparticle size on gastrointestinal tissue uptake. Methods. Biodegradable microparticles of various sizes using polylactic polyglycolic acid (50:50) co-polymer (100 nm, 500 nm, 1µm, and 10 µm) and bovine serum albumin as a model protein were formulated by water-in-oil-in-water emulsion solvent evaporation technique. The uptake of microparticles was studied in rat in situ intestinal loop model and quantitatively analyzed for efficiency of uptake. Results. In general, the efficiency of uptake of 100 nm size particles by the intestinal tissue was 15–250 fold higher compared to larger size microparticles. The efficiency of uptake was dependent on the type of tissue, such as Peyer's patch and non patch as well as on the location of the tissue collected i.e. duodenum or ileum. Depending on the size of microparticles, the Peyer's patch tissue had 2–200 fold higher uptake of particles than the non-patch tissue collected from the same region of the intestine. Histological evaluation of the tissue sections demonstrated that 100 nm particles were diffused throughout the submucosal layers while the larger size nano/microparticles were predominantly localized in the epithelial lining of the tissue. Conclusions. There is a microparticle size dependent exclusion phenomena in the gastrointestinal mucosal tissue with 100 nm size particles showing significantly greater tissue uptake. This has important implications in designing of nanoparticle-based oral drug delivery systems, such as an oral vaccine system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...