ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 168-169 (1995), S. 505-511 
    ISSN: 1573-5036
    Keywords: fertilization ; forest damage ; magnesium deficiency ; magnesium hydroxide ; Norway spruce ; typical Dystrochrept
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Main objective of this study was to test the effects of Mg(OH)2-fertilization in a Norway spruce ecosystem showing severe symptoms of Mg-deficiency. The site is characterized by high atmospheric inputs with deposition rates of 1.25 kg H, 42 kg S, and 32 kg N per ha and year. The typic Dystrochrept derived from granite is acidified down to greater depths. The pH-values in soil solution of the organic surface layer and the upper mineral soil are around 3.5. Concentrations of Al, SO4 2-, and especially NO3 - and DOC are very high. The element balance indicates a significant influence of N-inputs and processes of N-turnover on the chemical status of the soil and probably on tree nutrition. Nitrification in the upper mineral soil leads to a transformation of a major part of NH4 + into NO3 -, which is quantitatively leached, resulting in an ecosystem-internal H+-production of 1.8 keq ha-1yr-1. NO3 - and SO4 2- govern the seepage output from the ecosystem. Mg(OH)2 fertilization resulted in manifold increased Mg2+ concentrations in soil solution down to 70 cm soil depth and to a significant increase of pH down to 25 cm mineral soil depth. Nitrate concentrations were elevated after fertilization, but decreased within 15 months below the level of the control plot. As a mean over the whole experimental period, N-output was not increased by fertilization. Despite an elevated internal proton production due to nitrification, acid buffering in the soil was clearly increased, but enhanced Al-mobilization was not observed. Mg/Al- and Ca/H-ratios in soil solution indicate much more favourable conditions for fine root growth. Fertilization also increased the amount of exchangeable Mg down to 40cm mineral soil depth. Mg contents in current-year needles increased after three vegetation periods. Thirty months after application, only 10% and 4% of the fertilized Mg had left the organic surface layer and the mineral soil with seepage water output, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 152 (1993), S. 277-285 
    ISSN: 1573-5036
    Keywords: acid buffering ; element budget ; N-saturation ; N-turnover ; Norway spruce ; mineralisation ; typical Dystrochrept
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Element budgets of a heavily damaged Norway spruce ecosystem at Hohe Matzen in the Fichtel Mountains/FRG were studied over 3 years. The trees show severe symptoms of decline and Mg deficiency. The soil is a typic Dystrochrept derived from granite with sandy texture, high stone content, and low base saturation. The budgets show high releases of N, S and Al from the ecosystem as a result of input, buffering and turnover processes. After an increase of proton fluxes in the organic surface layer, a strong reduction of protons in the B horizon was found. This process was accompanied by the release of Al, whereas reactive Al(OH)3 was exhausted in the A horizon. The low ANC is also shown in pH-stat.-titrations. The data indicate a strong mineralisation in the humus layer, which results in a net release of NH4, SO4 and TOC. Nitrification takes place mainly in the A horizon. With respect to the N-budget, the ecosystem is approaching the state of N saturation. The processes of N turnover lead to an internal proton production exceeding the atmospheric input, and thus contributing to soil acidification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...