ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4978
    Keywords: bone ; intermediate filament ; nuclear matrix ; osteoblast ; osteosarcoma ; tissue matrix
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Treatment for osteosarcoma is problematic because there are no prognostic markers. Diagnosis is primarily limited to cytologic grading. Oncogenesis alters cell structure therefore osteoblast tissue matrix proteins (extracellular matrix, cytoskeletal, intermediate filament, and nuclear matrix proteins), components of the cell substructure, are candidates for osteosarcoma markers. Structural proteins of the extracellular matrix, e.g. the collagens, are useful for diagnosis but not for tumors that produce little osteoid. To identify principal cellular tissue matrix proteins that distinguish normal from transformed human osteoblasts, their expression in normal osteoblasts, two osteosarcoma cell lines, and three primary osteosarcoma tumors were compared. The tumors were graded as (i) intermediate, (ii) high, and (iii) high grade recurrent. The 1-D SDS/PAGE profiles of the major components of the nuclear matrix and intermediate filament fractions from normal osteoblasts did not vary with biopsy site, age, or sex of patients. These profiles included known cytoskeletal proteins and OB250, a ∼250 kD protein(s) observed in the intermediate filament fraction. A loss of protein bands, including OB250, was observed in the osteosarcoma cell lines and tumors. The intermediate and high grade tumors exhibited nearly identical protein profiles including potential tumor-specific proteins and collagen, consistent with the presence of intracellular collagen fibers in osteosarcoma. A microsequence was obtained for OT25, a novel low molecular weight protein observed in osteosarcoma cell lines. Fibrinogen γ-chain, a protein that mediates cell adhesion was recovered from the high grade recurrent tumor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 63 (1996), S. 374-383 
    ISSN: 0730-2312
    Keywords: tissue matrix ; primary spongiosa ; PTH-induced downregulation ; topoisomerase ; NuMA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Parathyroid hormone (PTH) alters osteoblast morphology. How these changes in cell shape modify nuclear structure and ultimately gene expression is not known. Chronic exposure to rat PTH (1-34) [10 nM] attenuated the expression of 200, 190, and 160 kD proteins in the nuclear matrix-intermediate filament subfraction of the rat osteosarcoma cells, ROS 17/2.8 [Bidwell et al. (1994b): Endocrinology 134:1738-1744]. Here, we determined that these same PTH-responsive proteins were expressed in rat metaphyseal osteoblasts. We identified the 200 kD protein as a non-muscle myosin. Although the molecular weights, subcellular distribution, and half-lives of the 190 and 160 kD proteins were similar to topoisomerase II-α and -β, nuclear matrix enzymes that mediate DNA topology, the 190 and 160 kD proteins did not interact with topoisomerase antibodies. Nevertheless, the expression of topoisomerase II-α, and NuMA, a component of the nuclear core filaments, was also regulated by PTH in the osteosarcoma cells. The 190 kD protein was selectively expressed in bone cells as it was not observed in OK opossum kidney cells, H4 hepatoma cells, or NIH3T3 cells. PTH attenuated mRNA expression of the PTH receptor in our cell preparations. These results demonstrate that PTH selectively alters the expression of osteoblast membrane, cytoskeletal, and nucleoskeletal proteins. Topoisomerase II-α, NuMA, and the 190 and 160 kD proteins may direct the nuclear PTH signalling pathways to the target genes and play a structural role in osteoblast gene expression. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...