ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • primitive characters  (1)
  • the number of prime divisors  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical notes 64 (1996), S. 382-393 
    ISSN: 1573-8876
    Keywords: multiplicative function ; additive divisor problem ; Riemann zeta function ; Euler function ; primitive characters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract For multiplicative functions ƒ(n), let the following conditions be satisfied: ƒ(n)≥0 ƒ(p r)≤A r,A〉0, and for anyε〉0 there exist constants $$A_\varepsilon$$ ,α〉0 such that $$f(n) \leqslant A_\varepsilon n^\varepsilon$$ and Σ p≤x ƒ(p) lnp≥αx. For such functions, the following relation is proved: $$\sum\limits_{n \leqslant x} {f(n)} \tau (n - 1) = C(f)\sum\limits_{n \leqslant x} {f(n)lnx(1 + 0(1))}$$ . Hereτ(n) is the number of divisors ofn andC(ƒ) is a constant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical notes 68 (2000), S. 614-626 
    ISSN: 1573-8876
    Keywords: the number of prime divisors ; Halácz estimate ; Chen method ; Selberg's sieve
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Suppose that E 1,E 2 are arbitrary subsets of the set of primes and $$g_{\text{1}} \left( n \right),g_{\text{2}} \left( n \right)$$ are additive functions taking integer values such that $$g_i \left( p \right) = 1{\text{ if }}p \in E〈Subscript〉i ,{\text{ and }}g_i \left( p \right) = 0$$ otherwise, i=1,2. Set $$E_i (x) = \sum \limits_{p \leqslant x, p \in E_i} \frac{1}{p}, i = 1, 2.$$ It is proved in this paper that if $$R\left( x \right) = \max \left( {E_1 \left( x \right),E_2 \left( x \right)} \right){\text{ }}a \ne 0$$ is an integer, then $$\mathop {\sup }\limits_m \left| {\left\{ {n:n \leqslant x,{\text{ }}g_2 \left( {n + a} \right) - g_1 \left( n \right) = m} \right\}} \right| \ll \frac{x}{{\sqrt {R\left( x \right)} }}.$$ If, moreover, $$E〈Subscript〉i \left( x \right) \geqslant T{\text{ for }}x \geqslant x_0$$ , where T is a sufficiently large constant and $$\left| {m - \left( {E〈Subscript〉2 \left( x \right) - E〈Subscript〉1 \left( x \right)} \right)} \right| \leqslant \mu \sqrt {R\left( x \right)} ,$$ then there exists a constant $$c\left( {\mu ,a,T} \right) 〉0$$ such that for $$x \geqslant x_0$$ we have $$\sum\limits_{i = 0}^3 {\left| {\left\{ {n:n \leqslant x,g_2 \left( {n + a} \right) - g_1 \left( n \right) = m + i} \right\}} \right|} \geqslant c\left( {\mu ,a,T} \right)\frac{x}{{\sqrt {R\left( x \right)} }}.$$
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...