ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 145 (1995), S. 537-559 
    ISSN: 1420-9136
    Keywords: Viscoelasticity ; subduction earthquakes ; fault slip ; tectonic forces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Because of the viscoelastic behaviour of the earth, accumulation of elastic strain energy by tectonic loading and release of such energy by earthquake fault slips at subduction zones may take place on different spatial scales. If the lithospheric plate is acted upon by distant tectonic forces, strain accumulation must occur in a broad region. However, an earthquake releases strain only in a region comparable to the size of the rupture area. A two-dimensional finite-element model of a subduction zone with viscoelastic rheology has been used to investigate the coupling of tectonic loading and earthquake fault slips. A fault lock-and-unlock technique is employed so that the amount of fault slip in an earthquake is not prescribed, but determined by the accumulated stress. The amount of earthquake fault slip as a fraction of the total relative plate motion depends on the relative sizes of the earthquake rupture area and the region of tectonic strain accumulation, as well as the rheology of the rock material. The larger the region of strain accumulation is compared to the earthquake rupture, the smaller is the earthquake fault slip. The reason for the limited earthquake fault slip is that the elastic shear stress in the asthenosphere induced by the earthquake resists the elastic rebound of the overlying plate. Since rapid permanent plate shortening is not observed at subduction zones, there must be either strain release over a large region or strain accumulation over a small region over earthquake cycles. The former can be achieved only by significant aseismic fault slip between large subduction earthquakes. The most likely mechanism for the latter is the accumulation of elastic strain around isolated locked asperities of the fault, which requires significant aseismic fault slip between asperities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...