ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • symbiosis  (3)
  • Agrobacterium  (1)
  • 1
    ISSN: 1573-5028
    Schlagwort(e): host recognition ; hsnD (nodH) ; nod genes ; Rhizobium ; root hair deformation ; symbiosis
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The role of the hsnD (nodH) gene in the determination of the host-specific nodulation ability of Rhizobium meliloti was studied by expressing the common nodulation genes (nodABC) with or without the hsnD gene in Escherichia coli and testing for biological activity on various leguminous plants. In this way, four categories of plants were established. Upon infection with E. coli carrying the nodABC construct, root hair deformation (Had) was detected on clovers while the hsnD gene was additionally needed for the elicitation of the same response on alfalfa and sweet clover. A weak root hair deformation was seen on siratro by inoculation with E. coli harbouring the nodABC genes and was highly increased when hsnD was also introduced. Cowpea and Desmodium did not respond to any of the E. coli strains constructed. Exudates or cytosolicfractions of the respective E. coli derivatives elicited the same root hair deformation as the intact bacteria. These data indicate that not only the nodABC gene products but also the hsnD product are involved in the synthesis of Had factors. Subclones expressing only the nodA, nodB, or nodC genes or the same genes in pairs (nodAB, nodBC, nodAC) did not provide a compound with activity comparable to the NodABC factor, suggesting that all three genes are required for the production of the Had factor which is active on clover. Coinoculation of alfalfa plants with two strains of E. coli, one carrying the nodABC genes and the other expressing only hsnD, or combining exudates or cytosolic fractions from these strains did not result in root hair deformation on alfalfa. These data indicate that the HsnD protein itself or its product is not an additional alfalfa-specific extracellular signal but more likely is enzymatically involved in the modification of the basic compound determined by the nodABC genes.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-5028
    Schlagwort(e): Key words ; alfalfa ; chalcone synthase ; dihydroflavonol-4 reductase ; flavanone-3 hydroxylase ; flavonoid ; symbiosis
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Flavonoids are plant phenolic compounds involved in leguminous plant-microbe interactions. Genes implied in the central branch (chalcone synthase (CHS), chalcone isomerase (CHI)) or in the isoflavonoid branch of the flavonoid biosynthesis pathway have been characterized in Medicago sativa. No information is available to date, however, on genes whose products are involved in the synthesis of other types of flavonoids. In this paper we present the genomic organization as well as the nucleotide sequence of one flavanone-3-hydroxylase (F3H) encoding gene of M. sativa, containing two introns and exhibiting 82–89% similarity at the amino acid level to other F3H proteins. This is the first report on the gennomic organization of a f3h gene so far. We present also the sequence of a partial dihydroflavonol-4-reductase (DFR) M. sativa cDNA clone. Southern blot experiments indicated that f3h and dfr genes are each represented by a single gene within the tetraploid genome of M. sativa. By a combination of Northern blot and RT-PCR analysis, we showed that both f3h and dfr genes are expressed in flowers, nodules and roots, with a pattern distinct from chs expression. Finally, we show that dfr is expressed in M. sativa leaves whereas f3h is not. The role played by these two genes in organs other than flowers remains to be determined.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Molecular breeding 1 (1995), S. 419-423 
    ISSN: 1572-9788
    Schlagwort(e): binary vectors ; gus ; T-DNA ; Agrobacterium
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract We describe here a set of binary vectors suitable forAgrobacterium-mediated gene transfer and specially designed for studying plant promoters. These vectors are based on the use of thegus reporter gene, contain multiple unique restriction sites upstream of thegus gene, and minimal promoters for testing the effect of enhancers or activator elements. In addition, an intron-containinggus (uidA) gene was introduced into one of these vectors in order to examine reporter gene activity in tissues whereAgrobacterium contamination may be a problem or in transient expression assays.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    World journal of microbiology and biotechnology 12 (1996), S. 175-188 
    ISSN: 1573-0972
    Schlagwort(e): Alfalfa ; defence mechanism ; flavonoids ; peroxidase ; PR protein ; symbiosis
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract During effective symbiosis, rhizobia colonize their hosts, and avoid plant defence mechanisms. To determine whether the host defence responses can be elicited by the symbiotic bacteria, specific markers involved in incompatible pathogenic interactions are required. The available markers of alfalfa defence mechanisms are described and their use in the study of the symbiotic interaction discussed. As defence-related gene expression in roots is not always related to defence mechanisms, other model systems have been established allowing confirmation of an important role of bacterial surface components in alfalfa-Rhizobium meliloti interactions. Nod factors at high concentrations have been shown to elicit defence-like responses in Medicago cell suspensions and roots. Elicitation of defence mechanisms by high levels of Nod factors in Rhizobium-infected roots may be a part of the mechanism by which nodulation is feed-back regulated.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...