ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9699
    Keywords: Saccharomyces cerevisiae ; pyruvate carboxylase ; anaplerotic reactions ; sugar metabolism ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A prototrophic pyruvate-carboxylase-negative (Pyc-) mutant was constructed by deleting the PYC1 and PYC2 genes in a CEN.PK strain of Saccharomyces cerevisiae. Its maximum specific growth rate on ethanol was identical to that of the isogenic wild type but it was unable to grow in batch cultures in glucose-ammonia media. Consistent with earlier reports, growth on glucose could be restored by supplying aspartate as a sole nitrogen source. Ethanol could not replace aspartate as a source of oxaloacetate in batch cultures. To investigate whether alleviation of glucose repression allowed expression of alternative pathways for oxaloacetate synthesis, the Pyc- strain and an isogenic wild-type strain were grown in aerobic carbon-limited chemostat cultures at a dilution rate of 0.10 h-1 on mixtures of glucose and ethanol. In such mixed-substrate chemostat cultures of the Pyc- strain, steady-state growth could only be obtained when ethanol contributed 30% or more of the substrate carbon in the feed. Attempts to further decrease the ethanol content of the feed invariably resulted in washout. In Pyc- as well as in wild-type cultures, levels of isocitrate lyase, malate synthase and phospho-enol-pyruvate carboxykinase in cell extracts decreased with a decreasing ethanol content in the feed. Nevertheless, at the lowest ethanol fraction that supported growth of the Pyc- mutant, activities of the glyoxylate cycle enzymes in cell extracts were still sufficient to meet the requirement for C4-compounds in biomass synthesis. This suggests that factors other than glucose repression of alternative routes for oxaloacetate synthesis prevent growth of Pyc-mutants on glucose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 621-628 
    ISSN: 0006-3592
    Keywords: Kluyveromyces ; Candida utilis ; Kluyver effect ; chemostat ; biomass ; whey ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Many facultatively fermentative yeast species exhibit a “Kluyver effect”: even under oxygen-limited growth conditions, certain disaccharides that support aerobic, respiratory growth are not fermented, even though the component monosaccharides are good fermentation substrates. This article investigates the applicability of this phenomenon for high-cell-density cultivation of yeasts. In glucose-grown batch cultures of Candida utilis CBS 621, the onset of oxygen limitation led to alcoholic fermentation and, consequently, a decrease of the biomass yield on sugar. In maltose-grown cultures, alcoholic fermentation did not occur and oxygen-limited growth resulted in high biomass concentrations (90 g dry weight L-1 from 200 g L-1 maltose monohydrate in a simple batch fermentation). It was subsequently investigated whether this principle could also be applied to Kluyveromyces species exhibiting a Kluyver effect for lactose. In oxygen-limited, glucose-grown chemostat cultures of K. wickerhamii CBS 2745, high ethanol concentrations and low biomass yields were observed. Conversely, ethanol was absent and biomass yields on sugar were high in oxygen-limited chemostat cultures grown on lactose. Batch cultures of K. wickerhamii grown on lactose exhibited the same growth characteristics as the maltose-grown C. utilis cultures: absence of ethanol formation and high biomass yields. Within the species K. marxianus, the occurrence of a Kluyver effect for lactose is known to be strain dependent. Thus, K. marxianus CBS 7894 could be grown to high biomass densities in lactose-grown batch cultures, whereas strain CBS 5795 produced ethanol after the onset of oxygen limitation and, consequently, yielded low amounts of biomass. Because the use of yeast strains exhibiting a Kluyver effect obviates the need for controlled substrate-feeding strategies to avoid oxygen limitation, such strains should be excellently suited for the production of biomass and growth-related products from low-cost disaccharide-containing feedstocks. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 28-39 
    ISSN: 0006-3592
    Keywords: enzyme activities ; central metabolism ; mammalian cells ; chemostat culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Activities of enzymes in glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and glutaminolysis have been determined in the mouse myeloma SP2/0.Ag14. Cells were grown on IMDM medium with 5% serum in steady-state chemostat culture at a fixed dilution rate of 0.03 h-1. Three culture conditions, which differed in supply of glucose and oxygen, were chosen so as to change catabolic fluxes in the central metabolism, while keeping anabolic fluxes constant. In the three steady-state situations, the ratio between specific rates of glucose and glutamine consumption differed by more than twentyfold. The specific rates of glucose consumption and lactate production were highest at low oxygen supply, whereas the specific rate of glutamine consumption was highest in the culture fed with low amounts of glucose. Under low oxygen conditions, the specific production of ammonia increased and the consumption pattern of amino acids showed large changes compared with the other two cultures. For the three steady states, activities of key enzymes in glycolysis, the pentose phosphate pathway, glutaminolysis, and the TCA cycle were measured. The differences in the in vivo fluxes were only partially reflected in changes in enzyme levels. The largest differences were observed in the levels of glycolytic enzymes, which were elevated under conditions of low oxygen supply. High activities of phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32) in all cultures suggest an important role for this enzyme as a link between glutaminolysis and glycolysis. For all enzymes, in vitro activities were found that could accommodate the estimated maximum in vivo fluxes. These results show that the regulation of fluxes in central metabolism of mammalian cells occurs mainly through modulation of enzyme activity and, to a much lesser extent, by enzyme synthesis. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:28-39, 1998.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 272-286 
    ISSN: 0006-3592
    Keywords: glutamine limitation ; mammalian cells ; chemostat ; specific metabolic rates ; hybridoma ; medium optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h-1, were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L-1. Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L-1, and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L-1 glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 272-286, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: pyruvate decarboxylase ; sugar metabolism ; Saccharomyces cerevisiae ; metabolic compartmentation ; acetyl-CoA ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In Saccharomyces cerevisiae, the structural genes PDC1, PDC5 and PDC6 each encode an active pyruvate decarboxylase. Replacement mutations in these genes were introduced in a homothallic wild-type strain, using the dominant marker genes APT1 and Tn5ble. A pyruvate-decarboxylase-negative (Pdc-) mutant lacking all three PDC genes exhibited a three-fold lower growth rate in complex medium with glucose than the isogenic wild-type strain. Growth in batch cultures on complex and defined media with ethanol was not impaired in Pdc- strains. Furthermore, in ethanol-limited chemostat cultures, the biomass yield of Pdc- and wild-type S. cerevisiae were identical. However, Pdc- S. cerevisiae was unable to grow in batch cultures on a defined mineral medium with glucose as the sole carbon source. When aerobic, ethanol-limited chemostat cultures (D = 0·10 h-1) were switched to a feed containing glucose as the sole carbon source, growth ceased after approximately 4 h and, consequently, the cultures washed out. The mutant was, however, able to grow in chemostat cultures on mixtures of glucose and small amounts of ethanol or acetate (5% on a carbon basis). No growth was observed when such cultures were used to inoculate batch cultures on glucose. Furthermore, when the mixed-substrate cultures were switched to a feed containing glucose as the sole carbon source, wash-out occurred. It is concluded that the mitochondrial pyruvate dehydrogenase complex cannot function as the sole source of acetyl-CoA during growth of S. cerevisiae on glucose, neither in batch cultures nor in glucose-limited chemostat cultures.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 1607-1633 
    ISSN: 0749-503X
    Keywords: Yeast ; glycolysis ; TCA cycle ; sugar metabolism ; metabolic engineering ; pyruvate decarboxylase ; pyruvate carboxylase ; pyruvate dehydrogenase complex ; alcoholic fermentation ; Crabtree effect ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...