ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: heat-shock proteins ; glucose-regulated proteins ; protein phosphorylation ; heat-shock response ; stress response ; brain tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Induction of heat-shock proteins and glucose-regulated proteins in 9L rat brain tumor cells can be differentially elicited by sodium arsenite, cadmium chloride, zinc chloride, copper sulfate, sodium fluoride, and L-azetidine-2-carboxylic acid. The kinds of stress protein induced by the above chemicals varied considerably, mainly determined by the nature and the concentration of the chemicals, as well as the treatment protocols. In addition, at the concentrations where stress proteins can be induced, the above chemicals were able to suppress general protein synthesis and were cytotoxic. Enhanced phosphorylation of a protein with an apparent molecular weight of 65 kDa was detected during the induction of stress proteins except in azetidine treatments during which uptake of phosphate by the cells was impaired after prolonged incubation. The phosphate moiety on the 65 kDa phosphoprotein appeared to be alkaline-stable and two-dimensional gel electrophoresis revealed that the phosphoprotein resolved into four isoforms with isoelectric points ranging from 5.1 to 5.6. Enhanced phosphorylation of the same protein was also detected in heat-shocked and withangulatin A-treated 9L cells in which stress proteins were induced. It is suggested that this phosphoprotein may be a common target for heat stress response-stimulated phosphorylation and important in the further metabolic responses of the cell to stress. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 253-265 
    ISSN: 0730-2312
    Keywords: heat-shock proteins ; stress response ; vimentin ; intermediate filament ; withangulatin A ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Withangulatin A induced cell rounding up and the morphological alteration resulted from the reorganization of all of the major cytoskeletal components, i.e., vimentin, tubulin, and actin, as revealed by immunofluorescence techniques. When the withangulatin A-treated cells changed to a round-up morphology, vimentin intermediate filaments were found to be collapsed and clustered around the nucleus. The alteration was accompanied by characteristic changes of vimentin molecules, including augmentation of phosphorylation, retardation of electrophoretic mobility, and decrease in detergent extractability. The levels of vimentin phosphorylation were augmented by 2.5- and 1.8-fold in cells incubated with 50 μM withangulatin A for 1 and 3 h, respectively. The electrophoretic mobility of vimentin was partially retarded in cells treated with withangulatin A for 1 h at 10 μM and a completely upshift mobility was observed after 5 h treatment at 50 μM. In addition, vimentin molecules became less extractable by nonident P-40 after the cells were treated with withangulatin A and this effect was dose dependent. The decrease in solubility of vimentin was accompanied by the redistribution of HSP72 into the detergent nonextractable fraction and these two events were well correlated. Our results suggest that withangulatin A induced the modification of vimentin, which resulted in the alteration of cell morphology and redistribution of intracellular HSP72, an event that may play an important role in the induction of heat-shock response.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 221-231 
    ISSN: 0730-2312
    Keywords: sodium fluoride ; stress response ; stress proteins ; heat shock proteins ; rat brain tumor 9L cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We herein demonstrate that sodium fluoride (NaF) acts as a stress response inducer on HeLa and 9L rat brain tumor cells. NaF is only slightly cytotoxic, and inhibitory to Ser/Thr-phosphatases but not to Tyr-phosphatases in both cell lines. After treatment with 5 mM NaF for 2 h, the phosphorylation levels of vimentin and an alkali-resistant 65-kDa phosphoprotein were enhanced, a common phenomenon detected in cells under a variety of stress conditions. Under an identical treatment protocol, in which the cells were treated with 5 mM NaF for 2 h and then allowed to recover under normal growing conditions for up to 12 h, NaF differentially induced the cytoplasmic/nuclear heat-shock protein70s (including both the inducible and the constitutively expressed members of this protein family) in HeLa cells and the endoplasmic reticulum residing heat-shock protein70 (the glucose-regulated protein with an apparent molecular weight of 78 kDa) in 9L cells. Electrophoretic mobility shift assays (EMSA) using probes containing well-characterized regulatory elements revealed the activation of the heat-shock factor in HeLa but not in 9L cells; this is in good agreement with the stress protein induction pattern. Additional differential induction of binding activities toward EMSA probes individually containing NF-κB, AP-2, and CRE-like elements were detected in NaF-treated cells. The possible involvement of these binding sites as well as the corresponding factors in the stress response are discussed. J. Cell. Biochem. 69:221-231, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...