ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • standing-gradient model  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 86 (1985), S. 203-210 
    ISSN: 1432-1424
    Keywords: Necturus gallbladder ; water permeability ; nuclear magnetic resonance ; standing-gradient model ; isosmotic fluid transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In order to assess the contribution of transcellular water flow to isosmotic fluid transport acrossNecturus gallbladder epithelium, we have measured the water permeability of the epithelial cell membranes using a nuclear magnetic resonance method. Spin-lattice (T 1) relaxation of water protons in samples of gallbladder tissue where the extracellular fluid contained 10 to 20mm Mn2+ showed two exponential components. The fraction of the total water population responsible for the slower of the two was 24±2%. Both the size of the slow component, and the fact that it disappeared when the epithelial layer was removed from the tissue, suggest that it was due to water efflux from the epithelial cells. The rate constant of efflux was estimated to be 15.6±1.0 sec1 which would be consistent with a diffusive membrane water permeabilityP d of 1.6×103 cm sec1 and an osmotic permeabilityP os of between 0.3×104 and 1.4×104 cm sec1 osmolar1. Using these data and a modified version of the standing-gradient model, we have reassessed the adequacy of a fluid transport theory based purely on transcellular osmotic water flow. We find that the model accounts satisfactorily for near-isosmotic fluid transport by the unilateral gallbladder preparation, but a substantial serosal diffusion barrier has to be included in order to account for the transport of fluid against opposing osmotic gradients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...