ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Strike-slip faults  (1)
  • stability of fracture propagation  (1)
  • 1
    ISSN: 1420-9136
    Keywords: Strike-slip faults ; kink bands ; Sierra Nevada ; stress orientation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Small left-lateral strike-slip faults and right-lateral monoclinal kink bands with subvertical fold axes may be related to the formation of a very large right-lateral kink band (Bear Creek kink band), about 8 km wide and at least 15 km long, trending N27W along Bear Creek Valley in the Mt. Abbot quadrangle, Sierra Nevada, California. A foliation within Bear Creek Valley is defined by vertical slabs of granodiorite bounded by joints and faults. Small strike-slip faults and larger fault zones have nucleated along preëxisting joints and accommodated shearing between granodiorite slabs. The orientations of small cracks that occur near the tips of faults or connect adjacent fault segments indicate that the direction of maximum compression was about 20° counterclockwise from traces of joints at the time the faults nucleated. In some places where faults are closely spaced there are small, right-lateral kink bands with widths of 1 to 20 m. The slabs of granodiorite are gently curved through the kink bands, and analysis of the orientations of slabs in the limbs of the small kink bands indicates that the direction of maximum compression during kink-band formation was 15° to 20° counterclockwise from the traces of faults outside the kink bands. The orientation of the maximum compression for the formation of the small cracks at tips of many strike-slip faults and for the formation of the small kink bands, relative to the orientation of the maximum compression inferred from the joints on the limb of Bear Creek kink band, suggests that the foliation within the Bear Creek Valley has reoriented a maximum of 40° to 60° clockwise. Although the various orientations of joints, faults, and kink bands could be explained in terms of different regional compression directions at different places and at different times in the Mt. Abbot quadrangle, a much simpler interpretation, based on analysis of large and small structures in the granodiorite in Bear Creek Valley, is that they all formed in response to one maximum regional compression in the direction N25E.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 103 (2000), S. 373-395 
    ISSN: 1573-2673
    Keywords: Critical fracture spacing to layer thickness ratio ; edge fractures ; finite element modeling ; layered materials ; stability of fracture propagation ; stress state transition.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Opening-mode fractures developed from a free surface in a layered material often terminate at the interface that divides the fractured layer and the underlying layer. They also display regular spacing that is of the same order of magnitude as the thickness of the fractured layer. We have investigated the stress distribution between two adjacent edge fractures as a function of the ratio of fracture spacing to thickness of the fractured layer using a two-layer elastic model with a fractured top layer. The results show that when the ratio of fracture spacing to the layer thickness changes from greater than to less than a critical value the normal stress acting perpendicular to the fractures near the free surface changes from tensile to compressive. This stress state transition precludes further infilling of fractures unless they are driven by mechanisms other than a pure extension, or there are flaws that significantly perturb the local stress field between the fractures. Hence, the critical fracture spacing to layer thickness ratio defines a lower limit for fractures driven by extension, which also defines the condition of fracture saturation. The critical value of the fracture spacing to layer thickness ratio is independent of the average strain of the fractured layer, and it increases with increasing ratio of Young's modulus of the fractured layer to that of the underlying layer. The critical value increases with increasing Poisson's ratio of the fractured layer, but it decreases with increasing Poisson's ratio of the underlying layer. For the case with the same elastic constants for the fractured layer and the underlying layer, the critical spacing to layer thickness ratio is about 3.1. Delamination between the fractured layer and the underlying layer makes the critical spacing to layer thickness ratio much greater. Infilling fractures grow more easily from flaws located near the bottom of the fractured layer than from those located near the free surface when the spacing to layer thickness ratio is less than the critical value. The propagation of an edge flaw between adjacent edge fractures is unstable, but for the flaw to propagate to the interface, its height has to be greater than a critical size, that decreases with increasing fracture spacing to layer thickness ratio. The propagation behavior of an internal flaw with its lower tip at the interface depends on the edge fracture spacing to layer thickness ratio. The propagation is unstable, when the fracture spacing to layer thickness ratio is greater than a critical value; stable, when the fracture spacing to layer thickness ratio is less than another critical value; and first unstable, then stable, and/or unstable again, when the fracture spacing to layer thickness ratio is between these two critical values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...