ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: 14C activity ; 13C CPMAS NMR spectroscopy ; lignite ; mine soils ; soil organic matter ; wet chemical analyses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the Lusatian mining district, in the eastern part of the Federal Republic of Germany, organic matter of reclaimed mine soils consists of a mixture of lignite and recently formed soil organic matter (recent carbon). The aim of the study was to investigate the recent carbon accumulation and the degree of humification of a chronosequence of young mine soils under forest. The lignite content of the forest floor, Ai (0–5 cm) and Cv horizons (1 m depth) was determined by 14CU activity measurements and the structural composition of the organic matter was characterised by 13C CPMAS NMR spectroscopy. To obtain a characterisation of the degree of humification, the soil samples were analysed for the content of polysaccharides, proteins, lignin and lipids by wet chemical methods. 14C activity measurements indicate that at the oldest site, comparable amounts of carbon accumulated in the first few centimetres of the soil profile than in natural forest soils. 13C CPMAS NMR spectra of the organic matter in the Ai horizons of the three soil profiles were dominated by aromatic and alkyl carbon species characteristic for lignite, but indicated as well an increasing contribution of carbon species from decomposing plant litter with soil age. When the results from wet chemical analyses were normalised to the total carbon content no changes with age could be noticed. After normalisation of the amount of litter compounds to the recent carbon content, the carbon identified by plant litter compound analysis decreased with increasing depth and increasing age of the soils. After 32 years the values are comparable to those of natural forest soils. These observations were confirmed by increasing degree of lignin alteration with stand age and soil depth. The data of wet chemical analyses complement data obtained by 14C activity measurements and 13C CPMAS NMR spectroscopy and lead to the conclusion that 32 years after reforestation the degree of humification of the soil organic matter is in the same range as those of natural sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-2932
    Keywords: 13C CPMAS NMR ; Germany ; lignite dust ; soil chemistry ; soil contamination ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Large areas in eastern Germany have been subjected to substantial airborne contamination by fly ash, soot and lignite dust. The objective of the study was to detect the input of lignite-derived airborne contamination into forest soils and to examine the chemical and structural characteristics of the soil organic matter, consisting of natural humic material and lignite-derived carbon in reforested immature mine soils. The mine soil developed on sandy overburden material that was excavated in open-cast lignite mines and had been relocated and deposited at a spoil bank. Samples were taken from the forest floor (L, Oh), the humic surface horizon (Ai), and the parent substrate (Cv) of an immature mine soil under a 25-year-old red oak (Quercus rubra), situated close to a briquette factory. The conceptual approach includes analyses of bulk soil as well as particle-size fractions for C and N contents, magnetic susceptibility, radiocarbon age and chemical structure by using 13C CPMAS NMR spectroscopy. High magnetic susceptibility of the Oh and Ai horizon is the result of airborne contamination by lignite-derived ash. Fly ash contamination consisting of ferrimagnetic minerals contributes mainly to the 〈20 μm fractions. In the Oh and Ai horizon, 44% and 46% of the C was found to be of anthropogenic origin. Structural information indicates that lignite-derived dust and/or soot are present in the coarse particle size fractions (6.3-200 μm). Anthropogenic C increased the C content as well as the contribution of alkyl and aromatic C species in the organic matter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...