ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • soil organic matter  (2)
  • Springer  (2)
Collection
Publisher
  • Springer  (2)
Years
  • 1
    ISSN: 1573-515X
    Keywords: soil organic matter ; CP/MAS13C NMR ; decomposition ; bioavailability ; particle size and density fractionation ; mollisol ; oxisol ; andosol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Solid-state cross-polarisation/magic-angle-spinning3C nuclear magnetic resonance (CP/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction. Although similar types of carbon were present in all of the fractions analysed, an influence of both soil type and particle size was evident. The chemical structure of the organic materials contained in the particle size fractions isolated from the Andosol was similar; however, for the Mollisols and Oxisols, the content of O-alkyl, aromatic and alkyl carbon was greatest in the coarse, intermediate and fine fractions, respectively. The compositional differences noted in progressing from the coarser to finer particle size fractions in the Mollisols and Oxisols were consistent with the changes noted in other studies where CP/MAS13C NMR was used to monitor the decomposition of natural organic materials. Changes in the C:N ratio of the particle size fractions supported the proposal that the extent of decomposition of the organic materials contained in the fine fractions was greater than that contained in the coarse fractions. The increased content of aromatic and alkyl carbon in the intermediate size fractions could be explained completely by a selective preservation mechanism; however, the further accumulation of alkyl carbon in the clay fractions appeared to result from both a selective preservation and anin situ synthesis. The largest compositional differences noted for the entire organic fraction of the five soils were observed between soil orders. The differences within orders were smaller. The Mollisols and the Andosol were both dominated by O-alkyl carbon but the Andosol had a lower alkyl carbon content. The Oxisols were dominated by both O-alkyl and alkyl carbon. A model describing the oxidative decomposition of plant materials in mineral soils is proposed and used to explain the influence of soil order and particle size on the chemical composition of soil organic matter in terms of its extent of decomposition and bioavailability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: soil organic matter ; CP/MAS13C NMR ; decomposition ; bioavailability ; particle size and density fractionation ; mollisol ; oxisol ; andosol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Solid-state cross-polarisation/magic-angle-spinning3C nuclear magnetic resonance (CP/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction. Although similar types of carbon were present in all of the fractions analysed, an influence of both soil type and particle size was evident. The chemical structure of the organic materials contained in the particle size fractions isolated from the Andosol was similar; however, for the Mollisols and Oxisols, the content of O-alkyl, aromatic and alkyl carbon was greatest in the coarse, intermediate and fine fractions, respectively. The compositional differences noted in progressing from the coarser to finer particle size fractions in the Mollisols and Oxisols were consistent with the changes noted in other studies where CP/MAS13C NMR was used to monitor the decomposition of natural organic materials. Changes in the C:N ratio of the particle size fractions supported the proposal that the extent of decomposition of the organic materials contained in the fine fractions was greater than that contained in the coarse fractions. The increased content of aromatic and alkyl carbon in the intermediate size fractions could be explained completely by a selective preservation mechanism; however, the further accumulation of alkyl carbon in the clay fractions appeared to result from both a selective preservation and anin situ synthesis. The largest compositional differences noted for the entire organic fraction of the five soils were observed between soil orders. The differences within orders were smaller. The Mollisols and the Andosol were both dominated by O-alkyl carbon but the Andosol had a lower alkyl carbon content. The Oxisols were dominated by both O-alkyl and alkyl carbon. A model describing the oxidative decomposition of plant materials in mineral soils is proposed and used to explain the influence of soil order and particle size on the chemical composition of soil organic matter in terms of its extent of decomposition and bioavailability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...