ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 335-353 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surfacewater acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R 2=0.84). The best two-variable model (adjustedR 2=0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl− concentrations in treatment solutions had a stronger effect (p=0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p=0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of longterm cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 333-351 
    ISSN: 1573-515X
    Keywords: base cations ; calcium ; forest ecosystem ; mobile anions ; soil acidification ; surface-water acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Anion fluxes from a forest soil are usually correlated with those of base cations (BC). Declines in base cation deposition or long-term depletion from the soil may change these relationships. We used multiple regression to identify biogeochemical variables predicting annual volume-weighted concentrations of BC in streamwater draining a forested watershed, and analysis of variance to compare the effects of Ca and Cl inputs on BC fluxes out of soil horizons in irrigated plots. For the watershed, anion concentrations in streamwater predicted BC export most precisely (R2 = 0.84). The best two-variable model (adjusted R2 = 0.91) also included BC concentration in bulk deposition. Consistent with predictions from equations governing exchange chemistry, the proportion of charge contributed by Ca2+ increased with increasing total anion concentration, while that of Na+ decreased. At the plot scale, Cl- concentrations in treatment solutions had a stronger effect (p = 0.06) on BC concentration in Oa-horizon solutions than did Ca2+ concentrations (p = 0.33). In individual horizons of individual plots, BC and total ion concentrations were correlated, but cation composition was not consistent within horizons from different plots. This study detected no evidence of long-term cation depletion in the soils controlling streamwater, but did detect extremely base-poor plots. Because acid deposition affects surface horizons first, streamwater chemistry may not be an adequate way to assess nutrient supply of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...